CODIMENSION TWO NONORIENTABLE SUBMANIFOLDS WITH NONNEGATIVE CURVATURE
YURIKO Y. BALDIN AND FRANCESCO MERCURI
(Communicated by David G. Ebin)

ABSTRACT. We prove that a compact nonorientable n-dimensional submanifold of \(\mathbb{R}^{n+2} \) with nonnegative curvature is a "generalized Klein bottle" if \(n \geq 3 \).

1. Introduction. In [1] we study isometric immersions of compact, orientable nonnegatively curved n-manifolds in \(\mathbb{R}^{n+2} \). The aim of this paper is to study the nonorientable case. If \(n = 2 \) there is an example of an isometric immersion of a flat Klein bottle in \(\mathbb{R}^4 \) (see [3]) and the results of [1] suggested that for \(n \geq 3 \) the "generalized Klein bottle" is, in fact, the only possible example. We will prove the following result.

THEOREM. Let \(M^n, n \geq 3 \), be a compact, nonorientable Riemannian manifold with nonnegative sectional curvatures and \(f: M^n \rightarrow \mathbb{R}^{n+2} \) an isometric immersion. Then there exists a \((n - 1)\)-dimensional manifold \(N^{n-1} \) homotopy equivalent to \(S^{n-1} \), such that

1. the orientable covering of \(M \) is diffeomorphic to \(S^1 \times N^{n-1} \) and the metric is locally a product;
2. \(M \) is diffeomorphic to a nonorientable bundle over \(S^1 \) with fibre \(N^{n-1} \) and the metric is locally a product;
3. the covering projection sends the fibres \(N^{n-1} \) of \(S^1 \times N^{n-1} \) isometrically onto the fibres of the bundle \(M \rightarrow S^1 \).

2. Known facts. We will state now some results to be used in the proof of the theorem. For their proofs and related references see [1].

\(M \) will denote a n-dimensional Riemannian manifold, \(n \geq 3 \), compact, connected, with nonnegative sectional curvatures, which admits an isometric immersion \(f: M^n \rightarrow \mathbb{R}^{n+2} \).

2.1. If \(M \) is orientable over a field \(F \) then \(\sum_{i=1}^{n-1} b_i(M; F) \leq 2 \), where \(b_i(M; F) = \dim H_i(M; F) \) is the \(i \)th Betti number of \(M \) with coefficients in \(F \).

2.2. If \(M \) is orientable, not simply connected, then \(\pi_1(M) \) is cyclic, and if \(n \geq 4 \), \(\pi_1(M) \cong \mathbb{Z} \).

2.3. If \(M \) is orientable and \(\pi_1(M) \cong \mathbb{Z} \) then there exists a compact \((n - 1)\)-dimensional manifold \(N \), homotopy-equivalent to a sphere such that \(M \) is diffeomorphic to \(S^1 \times N \) and the metric is locally a product. In fact the universal covering of \(M \) is isometric to \(\mathbb{R} \times N \).

Received by the editors July 13, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 53C40; Secondary 53C42.

©1988 American Mathematical Society
0002-9939/88 $1.00 + .25 per page
918
3. Proof of the theorem.

3.1. \(\pi_1(M) \cong Z \). Let \(\theta : \overline{M} \to M \) be the orientation covering of \(M \). By 2.2 \(\pi_1(M) \) is cyclic. If \(\pi_1(M) \) is finite then \(b_1(M; \mathbb{R}) = 0 \) and, by 2.2, \(n = 3 \). But \(M \) is not orientable and therefore \(b_3(M; \mathbb{R}) = 0 \) which leads to \(0 = \chi(M) = 1 + b_2(M; \mathbb{R}) \geq 1 \). So \(\pi_1(M) \cong Z \). Now, since \(\theta \) is a double covering we have the exact sequence

\[
0 \to Z \cong \pi_1(M) \xrightarrow{\theta^\#} \pi_1(M) \to Z_2 \to 0.
\]

It is not difficult to see that the only groups that fit such an exact sequence are \(Z \), \(Z \times Z_2 \) and the semi-direct product \(Z \ltimes_\phi Z_2 \) where \(\phi : Z_2 \to \text{Aut}(Z) \cong Z_2 \) is the identity. In the latter two cases we will have respectively

\[
H_1(M; Z) \cong Z \oplus Z_2 \quad \text{and} \quad H_1(M; Z) \cong Z_2 \oplus Z_2
\]

and in both cases \(b_1(M; Z_2) = 2 \). By duality \(b_{n-1}(M; Z_2) = 2 \) and therefore \(\sum_{i=0}^{n-1} b_i(M; Z_2) \geq 4 \) which contradicts 2.1. Therefore \(\pi_1(M) \cong Z \) and \(\theta^\# \) is multiplication by \(\pm 2 \).

3.2. \(M \) is a fibre bundle over \(S^1 \) with connected fibre. By 2.3 \(\overline{M} \) is diffeomorphic to \(S^1 \times N \) and the metric is locally a product. Let \(X \) be a unitary vector field tangent to the \(S^1 \) factor. Then \(X \) is parallel and the only one up to a constant multiple (in fact, \(H^1(M; \mathbb{R}) \cong \mathbb{R} \) is generated by a 1-form dual to a parallel field). Let \(r : M \to M \) be the nontrivial covering transformation and define a vector field in \(M \) by

\[
X(p) = \frac{1}{2} \left\{ (d\theta)_x X(x) + (d\theta)_{r(x)} X(r(x)) \right\}, \quad p = \theta^i(x),
\]

and then \(X \) is a well-defined parallel field. We want to show that \(X \neq 0 \). In fact if \(X \equiv 0 \) then \((d\theta)(X) \) defines a line field whose integral curves are projections of the integral curves of \(X \). More precisely consider \(\theta^{-1}(x) = \{ x, \tau(x) \} \) and let \(\gamma, \sigma \) be the integral curves of \(X \) through \(x \) and \(\tau(x) \) respectively. If \(\gamma \neq \sigma \), then \(\theta(\gamma) \) and \(\theta(\sigma) \) represent the same closed curve in \(M \) with opposite orientation. Let \(\alpha \) be a curve from \(x \) to \(\tau(x) \). The loop \(\gamma \ast \alpha \ast \sigma \ast \alpha^{-1} \) represents twice the generator of \(\pi_1(M) \) and therefore is nonzero. But \(\theta(\gamma \ast \alpha \ast \sigma \ast \alpha^{-1}) \) is a commutator in \(\pi_1(M) \), since, by the above, \(\theta(\sigma) = \theta(\gamma)^{-1} \). This leads to a contradiction since \(\pi_1(M) \) is abelian and \(\theta^\#: \pi_1(M) \to \pi_1(M) \) is 1 - 1. If \(\gamma = \sigma \) a similar argument leads to the same contradiction.

So \(X \) is a nonzero parallel field. The distribution \(X^\perp \) is integrable and its leaves are the image, by \(\theta \), of the leaves of \(X^\perp \), so in particular they are compact. Now it is shown in [2], that for a complete Riemannian manifold \(M \), there exist:

(a) A maximal subspace \(U \) of the space of parallel fields such that the leaves of \(U^\perp \) are closed in \(M \) (Proposition III.5).

(b) A Riemannian fibration of \(M \) on a \(m \)-dimensional flat torus, \(m = \dim U \), whose fibres are the integral leaves of \(U^\perp \) (Proposition III.6).

The space of parallel fields, in our case, is of dimension \(\leq 1 \) (since \(H_1(M; \mathbb{R}) \cong \mathbb{R} \)), so it is spanned by \(X \). So, with the above notation \(U = \text{span}\{X\} \) and the claim is proved.

3.3. The fibres of \(M \to S^1 \) are homotopy spheres. Let \(F \) be the fibre of the above fibration. Since \(F \) is connected and \(\pi_1(M) \cong Z \) (by 3.1), we have the exact sequence

\[
\pi_{j+1}(S^1) \to \pi_j(F) \to \pi_j(M) \to \pi_j(S^1) \to \cdots \to \pi_1(F) \to Z \to Z \to 0.
\]
Therefore \(\pi_1(F) = 0 \) and \(\pi_j(F) \cong \pi_j(M) \cong \pi_j(\overline{M}) \cong \pi_j(N), \) for \(j \geq 2 \) (\(\overline{M} \cong S^1 \times N \)), which prove 3.3 and the theorem.

4. Final remarks. The compact, nonorientable surfaces which admit metrics of nonnegative curvature are the flat Klein bottle and the projective plane \(\mathbb{R}P^2 \).

As we mentioned in the introduction the flat Klein bottle admits an isometric immersion in \(\mathbb{R}^4 \). It would be interesting to know if \(\mathbb{R}P^2 \) admits an immersion in \(\mathbb{R}^4 \) with nonnegative curvature. Also it would be of interest to construct examples of “generalized Klein bottle” in \(\mathbb{R}^{n+2} \) with nonnegative curvature.

References