Partitioner-representable algebras
HTML articles powered by AMS MathViewer
- by R. Frankiewicz and P. Zbierski
- Proc. Amer. Math. Soc. 103 (1988), 926-928
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947684-1
- PDF | Request permission
Abstract:
We give a simple proof of the theorem of Baumgartner and Weese on representability of Boolean algebras. We also show that the representability of $P\left ( {{\omega _1}} \right )$ implies the existence of a relative ${Q_3}$-set.References
- James E. Baumgartner and Martin Weese, Partition algebras for almost-disjoint families, Trans. Amer. Math. Soc. 274 (1982), no. 2, 619–630. MR 675070, DOI 10.1090/S0002-9947-1982-0675070-X
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267
- Arnold W. Miller, On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), no. 3, 233–267. MR 548475, DOI 10.1016/0003-4843(79)90003-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 926-928
- MSC: Primary 03E50; Secondary 03E05, 06E05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947684-1
- MathSciNet review: 947684