## On two problems concerning Baire sets in normal spaces

HTML articles powered by AMS MathViewer

- by Zoltán T. Balogh
- Proc. Amer. Math. Soc.
**103**(1988), 939-945 - DOI: https://doi.org/10.1090/S0002-9939-1988-0947687-7
- PDF | Request permission

## Abstract:

Two problems will be dealt with. The first problem, due to Katetov, asks whether there is a normal, nonperfect ${T_2}$ space $X$ such that the Baire and Borel algebras in $X$ coincide. The second problem, due to Ross and Stromberg, asks whether each closed Baire set has to be zero set in a normal, locally compact ${T_2}$ space. Several consistent examples of spaces satisfying the requirements of the first problem will be constructed. A counterexample to the second problem is given in ZFC.## References

- Zoltán T. Balogh and Harold Bennett,
*On two classes of sets containing all Baire sets and all co-analytic sets*, Topology Appl.**33**(1989), no. 3, 247–264. MR**1026927**, DOI 10.1016/0166-8641(89)90106-5
D. Burke, Lectures given at Texas Tech University, February 1986, and at the Spring Topology Conference, Lafayette, La., April 1986.
- W. W. Comfort,
*Closed Baire sets are (sometimes) zero-sets*, Proc. Amer. Math. Soc.**25**(1970), 870–875. MR**259053**, DOI 10.1090/S0002-9939-1970-0259053-7 - Eric K. van Douwen and Howard H. Wicke,
*A real, weird topology on the reals*, Houston J. Math.**3**(1977), no. 1, 141–152. MR**433414** - Paul R. Halmos,
*Measure Theory*, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR**0033869** - R. W. Hansell,
*Topological properties of Souslin subsets*, Trans. Amer. Math. Soc.**293**(1986), no. 2, 613–622. MR**816314**, DOI 10.1090/S0002-9947-1986-0816314-4 - I. Juhász, K. Kunen, and M. E. Rudin,
*Two more hereditarily separable non-Lindelöf spaces*, Canadian J. Math.**28**(1976), no. 5, 998–1005. MR**428245**, DOI 10.4153/CJM-1976-098-8 - Kenneth Kunen,
*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR**597342** - M. Katětov,
*Measures in fully normal spaces*, Fund. Math.**38**(1951), 73–84. MR**48531**, DOI 10.4064/fm-38-1-73-84 - Kenneth Kunen and Jerry E. Vaughan (eds.),
*Handbook of set-theoretic topology*, North-Holland Publishing Co., Amsterdam, 1984. MR**776619** - E. Michael,
*The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc.**69**(1963), 375–376. MR**152985**, DOI 10.1090/S0002-9904-1963-10931-3 - Arnold W. Miller,
*On the length of Borel hierarchies*, Ann. Math. Logic**16**(1979), no. 3, 233–267. MR**548475**, DOI 10.1016/0003-4843(79)90003-2 - Kenneth A. Ross and Karl Stromberg,
*Baire sets and Baire measures*, Ark. Mat.**6**(1965), 151–160 (1965). MR**196029**, DOI 10.1007/BF02591355
S. Todorcevic, - Z. Szentmiklóssy,
*$S$-spaces and $L$-spaces under Martin’s axiom*, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1139–1145. MR**588860** - W. Weiss,
*A countably paracompact nonnormal space*, Proc. Amer. Math. Soc.**79**(1980), no. 3, 487–490. MR**567999**, DOI 10.1090/S0002-9939-1980-0567999-1

*No*$S$

*spaces*, manuscript.

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**103**(1988), 939-945 - MSC: Primary 54C50; Secondary 54A35, 54D45
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947687-7
- MathSciNet review: 947687