Fixed point theorems for compact acyclic metric spaces
HTML articles powered by AMS MathViewer
- by Sehie Park
- Proc. Amer. Math. Soc. 103 (1988), 946-950
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947688-9
- PDF | Request permission
Abstract:
Multifunctions $F:X \to {2^M}$ are studied where $X \subset M$ is either a compact acyclic finite-dimensional ANR or a compact acyclic lc subspace. Conditions are found for the existence of $v$ such that $d(v,Fv) = d(X,Fv)$ and, also, for the existence of fixed points.References
- Edward G. Begle, A fixed point theorem, Ann. of Math. (2) 51 (1950), 544–550. MR 35433, DOI 10.2307/1969367
- Claude Berge, Espaces topologiques: Fonctions multivoques, Collection Universitaire de Mathématiques, Vol. III, Dunod, Paris, 1959 (French). MR 0105663
- Samuel Eilenberg and Deane Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214–222. MR 16676, DOI 10.2307/2371832
- Ky Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. MR 251603, DOI 10.1007/BF01110225
- Ky Fan, A minimax inequality and applications, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 103–113. MR 0341029
- J. Gwinner, On fixed points and variational inequalities—a circular tour, Nonlinear Anal. 5 (1981), no. 5, 565–583. MR 613064, DOI 10.1016/0362-546X(81)90104-8
- J. F. McClendon, Minimax and variational inequalities for compact spaces, Proc. Amer. Math. Soc. 89 (1983), no. 4, 717–721. MR 719003, DOI 10.1090/S0002-9939-1983-0719003-2
- Richard B. Thompson, Fixed point indices in locally convex spaces, Advances in Math. 14 (1974), 73–91. MR 344954, DOI 10.1016/0001-8708(74)90024-3
- T. van der Walt, Fixed and almost fixed points, Mathematical Centre Tracts, vol. 1, Mathematisch Centrum, Amsterdam, 1963. MR 0205246
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 946-950
- MSC: Primary 54H25; Secondary 55M20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947688-9
- MathSciNet review: 947688