## Extension of random contractions

HTML articles powered by AMS MathViewer

- by J. Myjak and W. Zygadlewicz
- Proc. Amer. Math. Soc.
**103**(1988), 951-955 - DOI: https://doi.org/10.1090/S0002-9939-1988-0947689-0
- PDF | Request permission

## Abstract:

Let $\Omega$ be a measurable space. Let $X$ and $Y$ be separable Hilbert spaces and let $D$ be a subset of $X$. Then every random contraction $f:\Omega \times D \to Y$ can be extended to a random contraction defined on all $\Omega \times X$. This statement remains true if $\Omega$ is a complete measurable space, $X$ and $Y$ are separable metric spaces and the pair $(X,Y)$ has the Kirszbraun intersection property.## References

- C. Castaing and M. Valadier,
*Convex analysis and measurable multifunctions*, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR**0467310** - Branko Grünbaum,
*A generalization of theorems of Kirszbraun and Minty*, Proc. Amer. Math. Soc.**13**(1962), 812–814. MR**156179**, DOI 10.1090/S0002-9939-1962-0156179-9 - Ludwig Danzer, Branko Grünbaum, and Victor Klee,
*Helly’s theorem and its relatives*, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101–180. MR**0157289** - Otto Hanš,
*Measurability of extensions of continuous random transforms*, Ann. Math. Statist.**30**(1959), 1152–1157. MR**108846**, DOI 10.1214/aoms/1177706100 - C. J. Himmelberg,
*Measurable relations*, Fund. Math.**87**(1975), 53–72. MR**367142**, DOI 10.4064/fm-87-1-53-72 - K. Kuratowski and C. Ryll-Nardzewski,
*A general theorem on selectors*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**13**(1965), 397–403 (English, with Russian summary). MR**188994**
S. Mazur and S. Ulam, - J. H. Wells and L. R. Williams,
*Embeddings and extensions in analysis*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York-Heidelberg, 1975. MR**0461107** - F. A. Valentine,
*A Lipschitz condition preserving extension for a vector function*, Amer. J. Math.**67**(1945), 83–93. MR**11702**, DOI 10.2307/2371917

*Sur les transformations isométriques d’espace vectoriels normés*, C. R. Acad. Sci. Paris

**194**(1932), 946-948.

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**103**(1988), 951-955 - MSC: Primary 54C20; Secondary 28B20, 47H09
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947689-0
- MathSciNet review: 947689