Extension of random contractions
HTML articles powered by AMS MathViewer
- by J. Myjak and W. Zygadlewicz
- Proc. Amer. Math. Soc. 103 (1988), 951-955
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947689-0
- PDF | Request permission
Abstract:
Let $\Omega$ be a measurable space. Let $X$ and $Y$ be separable Hilbert spaces and let $D$ be a subset of $X$. Then every random contraction $f:\Omega \times D \to Y$ can be extended to a random contraction defined on all $\Omega \times X$. This statement remains true if $\Omega$ is a complete measurable space, $X$ and $Y$ are separable metric spaces and the pair $(X,Y)$ has the Kirszbraun intersection property.References
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- Branko Grünbaum, A generalization of theorems of Kirszbraun and Minty, Proc. Amer. Math. Soc. 13 (1962), 812–814. MR 156179, DOI 10.1090/S0002-9939-1962-0156179-9
- Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly’s theorem and its relatives, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101–180. MR 0157289
- Otto Hanš, Measurability of extensions of continuous random transforms, Ann. Math. Statist. 30 (1959), 1152–1157. MR 108846, DOI 10.1214/aoms/1177706100
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403 (English, with Russian summary). MR 188994 S. Mazur and S. Ulam, Sur les transformations isométriques d’espace vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
- J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York-Heidelberg, 1975. MR 0461107
- F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83–93. MR 11702, DOI 10.2307/2371917
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 951-955
- MSC: Primary 54C20; Secondary 28B20, 47H09
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947689-0
- MathSciNet review: 947689