Compactifications whose remainders are retracts
HTML articles powered by AMS MathViewer
- by Gary D. Faulkner
- Proc. Amer. Math. Soc. 103 (1988), 984-988
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947694-4
- PDF | Request permission
Abstract:
This paper is concerned with compactifications in which the remainder is a (neighborhood) retract. Two theorems which characterize such compactifications are proved here. One of the characterizations is in terms of singular functions and the other in terms of projections on spaces of continuous real valued functions.References
- George L. Cain Jr., Compact and related mappings, Duke Math. J. 33 (1966), 639–645. MR 200903
- George L. Cain Jr., Mappings with prescribed singular sets, Nieuw Arch. Wisk. (3) 17 (1969), 200–203. MR 256364
- George L. Cain, Richard E. Chandler, and Gary D. Faulkner, Singular sets and remainders, Trans. Amer. Math. Soc. 268 (1981), no. 1, 161–171. MR 628452, DOI 10.1090/S0002-9947-1981-0628452-5
- Richard E. Chandler, Gary D. Faulkner, Josephine P. Guglielmi, and Margaret C. Memory, Generalizing the Alexandroff-Urysohn double circumference construction, Proc. Amer. Math. Soc. 83 (1981), no. 3, 606–608. MR 627703, DOI 10.1090/S0002-9939-1981-0627703-6
- Richard E. Chandler and Fu-Chien Tzung, Remainders in Hausdorff compactifications, Proc. Amer. Math. Soc. 70 (1978), no. 2, 196–202. MR 487981, DOI 10.1090/S0002-9939-1978-0487981-3
- W. W. Comfort, Retractions and other continuous maps from $\beta X$ onto $\beta X\sbs X$, Trans. Amer. Math. Soc. 114 (1965), 1–9. MR 185571, DOI 10.1090/S0002-9947-1965-0185571-9
- John B. Conway, Projections and retractions, Proc. Amer. Math. Soc. 17 (1966), 843–847. MR 195048, DOI 10.1090/S0002-9939-1966-0195048-9
- David W. Dean, Projections in certain continuous function spaces $C(H)$ and subspaces of $C(H)$ isomorphic with $C(H)$, Canadian J. Math. 14 (1962), 385–401. MR 144191, DOI 10.4153/CJM-1962-031-2
- David W. Dean, Subspaces of $C(H)$ which are direct factors of $C(H)$, Proc. Amer. Math. Soc. 16 (1965), 237–242. MR 173137, DOI 10.1090/S0002-9939-1965-0173137-1 N. Dunford and J. T. Schwartz, Linear operators, Wiley, New York, 1957. Josephine P. Guglielmi, Compactifications with singular remainders, Ph.D. Thesis, North Carolina State Univ., 1986.
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- K. D. Magill Jr., $N$-point compactifications, Amer. Math. Monthly 72 (1965), 1075–1081. MR 185572, DOI 10.2307/2315952
- R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516–541. MR 4094, DOI 10.1090/S0002-9947-1940-0004094-3
- Andrew Sobczyk, Projection of the space $(m)$ on its subspace $(c_0)$, Bull. Amer. Math. Soc. 47 (1941), 938–947. MR 5777, DOI 10.1090/S0002-9904-1941-07593-2
- G. T. Whyburn, Compactification of mappings, Math. Ann. 166 (1966), 168–174. MR 200905, DOI 10.1007/BF01361445
- Eric K. van Douwen, Retractions from $\beta X$ onto $\beta X-X$, General Topology Appl. 9 (1978), no. 2, 169–173. MR 515003
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 984-988
- MSC: Primary 54D35; Secondary 54C10, 54D40
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947694-4
- MathSciNet review: 947694