THE VIRTUAL Z-REPRESENTABILITY OF CERTAIN 3-MANIFOLD GROUPS

MARK D. BAKER

(Communicated by Haynes R. Miller)

ABSTRACT. We use results on the cohomology of principal congruence subgroups of $\text{PSL}_2(\mathbb{Z}[\omega])$, $\omega^2 + \omega + 1 = 0$, to prove the existence of a large class of closed, orientable 3-manifolds with virtually \mathbb{Z}-representable fundamental groups. In particular, these manifolds have finite covers with positive first Betti number.

1. Let M be a compact 3-manifold. We say that M has a virtually \mathbb{Z}-representable fundamental group if some finite index subgroup $G \leq \pi_1(M)$ maps epimorphically to \mathbb{Z}, or equivalently, if M has a finite sheeted cover \tilde{M} with rank $H_1(\tilde{M}) \geq 1$. If M is compact, orientable, and irreducible, then the virtual \mathbb{Z}-representability of $\pi_1(M)$ implies that the above cover \tilde{M} is a Haken manifold (cf. [H1]). Waldhausen has conjectured that a closed, orientable, irreducible 3-manifold M with infinite fundamental group is virtually Haken i.e. is finitely covered by a Haken manifold. Hence a stronger version of this conjecture is that every such M has a virtually \mathbb{Z}-representable fundamental group.

In this paper we prove the existence of a large class of closed, orientable 3-manifolds with virtually \mathbb{Z}-representable fundamental groups. Let M be a closed, orientable 3-manifold. Then M can be realized as a branched cover of S^3, branched over the figure eight knot, K [HLM]. We prove:

THEOREM. Let M be a closed, orientable 3-manifold which is a branched cover of S^3, branched over the figure eight knot with all branching indices divisible by a common integer $n \geq 5$. Then M has a virtually \mathbb{Z}-representable fundamental group.

Note. Using different methods, Hempel [H2] has proved this result in the case where the branching indices are all equal to an odd integer $n \geq 3$.

In [B] we showed that for $n \geq 5$ the n-fold branched cyclic covers of S^3 branched over the figure eight knot had virtually \mathbb{Z}-representable fundamental groups. The above theorem generalizes this result.

2. Let $M \rightarrow S^3$ be branched over the figure eight knot, K, with all branching indices divisible by a common integer $n \geq 5$, and let $X \rightarrow N$ be the associated unbranched cover obtained by removing an open tubular neighborhood of the branch set K and its inverse image (thus ∂X, ∂N are disjoint unions of tori).
We will use the fact that $N = S_3 \setminus K$ has an arithmetic hyperbolic structure. Specifically

$$\pi_1(N) = \langle x, y \mid (x^{-1}yxy^{-1})x(x^{-1}yxy^{-1})^{-1} = y \rangle$$

and there is a discrete, faithful representation $\pi_1(N) \to PSL_2(\mathbb{Z}[\omega])$, where $\omega^2 + \omega + 1 = 0$, given by

$$x \mapsto \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad y \mapsto \begin{bmatrix} 1 & 0 \\ -\omega & 1 \end{bmatrix}$$

(cf. [R]). Denote by Γ_K (resp. Γ) the image of $\pi_1(N)$ (resp. $\pi_1(X) \subset \pi_1(N)$) in $PSL_2(\mathbb{Z}[\omega])$ under this representation.

A meridian loop μ in ∂N can be chosen so that $[\mu] = x$. In each component of ∂X there is a loop α_i that projects r_i to 1 onto μ, where r_i is the corresponding branching index in the branched cover $M \to S^3$. Hence it follows that the loop α_i corresponds to a homotopy class in $\pi_1(X)$ represented in Γ by an element of the form

$$R_i \begin{bmatrix} 1 & r_i \\ 0 & 1 \end{bmatrix} R_i^{-1},$$

where $R_i \in \Gamma_K$.

\section{Consider the regular cover $Y \to X$ corresponding to the normal subgroup $\Gamma \cap \Gamma(n) \subset \Gamma$, where $\Gamma(n) \subset PSL_2(\mathbb{Z}[\omega])$ is the n-principal congruence subgroup (cf. [S]).}

Lemma 1. The loops α_i in ∂X lift to loops in the boundary tori of Y (hence these lifted loops project homeomorphically to the α_i).

Proof. The loops α_i in $\pi_1(X)$ are represented in Γ by elements of the form

$$R_i \begin{bmatrix} 1 & r_i \\ 0 & 1 \end{bmatrix} R_i^{-1}, \quad R_i \in \Gamma_K,$$

which are also in $\Gamma \cap \Gamma(n)$ since

$$\begin{bmatrix} 1 & r_i \\ 0 & 1 \end{bmatrix} \in \Gamma(n)$$

($n \mid r_i$ by assumption) and $\Gamma(n)$ is normal in $PSL_2(\mathbb{Z}[\omega])$. \qed

Now in each component of ∂Y covering the component of ∂X containing α_i, choose one lift β_{ij} of α_i. Then it follows that

Lemma 2. The cover $Y \to X$ extends to a regular (unbranched) cover $\tilde{M} \to M$ by performing Dehn filling on X and on Y with respect to the loops $\{\alpha_i\}$ in ∂X and $\{\beta_{ij}\}$ in ∂Y.

By Dehn filling on a 3-manifold P with respect to a loop in a boundary torus we mean attaching a solid torus to ∂P so that this loop bounds a meridional disk in the solid torus.

\section{We complete the proof of our theorem by showing that the cover $\tilde{M} \to M$ constructed in §3 satisfies rank $H_1(\tilde{M}) \geq 1$. To see this, consider the cover $Y \to X$ from which we obtained $\tilde{M} \to M$ by Dehn filling. Let $i: \partial Y \to Y$ be the inclusion map. Then it suffices to show that

(*) \quad \text{rank}[H_1(Y)/i_*(H_1(\partial Y))] \geq 1.
Given a finite index subgroup $G \subset \text{PSL}_2(\mathbb{Z}[\omega])$, denote by $U_G \subset G$ the (normal) subgroup generated by the parabolic matrices of G.

Definition. $d(G) = \dim_{\mathbb{Q}} ((G/U_G)^{\text{ab}} \otimes_{\mathbb{Z}} \mathbb{Q})$

Lemma 3. If $G' \subset G$ is of finite index, then $d(G') \geq d(G)$.

Proof. Since $G' \subset G$ is of finite index, the homomorphism, $(G'/U_{G'})^{\text{ab}} \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow (G/U_G)^{\text{ab}} \otimes_{\mathbb{Z}} \mathbb{Q}$ is surjective. ♡

Lemma 4. $d(\Gamma \cap \Gamma(n)) = \text{rank}[H_1(Y)/i_*(H_1(\partial Y))]$

Proof. Follows from the isomorphism $\pi_1(Y) \cong \Gamma \cap \Gamma(n)$ and the correspondence between homotopy classes of loops in ∂Y and parabolic matrices of $\Gamma \cap \Gamma(n)$. ♡

Now since $\Gamma \cap \Gamma(n) \subset \Gamma(n)$, (*) follows from Lemmas 3–4 and

Lemma 5. For $n \geq 5$, $d(\Gamma(n)) \geq 1$.

Proof. Let $\mathbb{Z}_n[\omega] \subset \mathbb{Z}[\omega]$ denote the order of index n. Since

$$\Gamma(n) \subset \text{PSL}_2(\mathbb{Z}_n[\omega])$$

is of finite index, it suffices to prove the lemma for $\text{PSL}_2(\mathbb{Z}_n[\omega])$, $n \geq 5$. Grunewald and Schwermer [GS] show that $d(\text{PSL}_2(\mathbb{Z}_n[\omega])) \geq \text{card}(W) - 1$, where W is the set of natural numbers m satisfying the following conditions:

(a) $m > 0$, $m \neq 2$, $(m, n) = 1$,
(b) $4m^2 \leq 3n^2 - 3$,
(c) every prime divisor of m is inert in $\mathbb{Z}[\omega]$.

Thus if $n \geq 6$ and $(5, n) = 1$, then $\{1, 5\} \subset W$ and we are done. If $5|n$, then $\text{PSL}_2(\mathbb{Z}_n[\omega]) \subset \text{PSL}_2(\mathbb{Z}_5[\omega])$ and a computation gives $d(\text{PSL}_2(\mathbb{Z}_5[\omega])) \geq 1$. ♡

References

Department of Mathematics, Brown University, Providence, Rhode Island 02912

Current address: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use