Zeros of diagonal equations over finite fields
HTML articles powered by AMS MathViewer
- by Da Qing Wan
- Proc. Amer. Math. Soc. 103 (1988), 1049-1052
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954981-2
- PDF | Request permission
Abstract:
Let $N$ be the number of solutions $({x_1}, \ldots ,{x_n})$ of the equation (1) \[ (1)\quad {c_1}x_1^{{d_1}} + {c_2}x_2^{{d_2}} + \cdots + {c_n}x_n^{{d_n}} = c\] over the finite field ${F_q}$, where ${d_i}|(q - 1),{c_i} \in F_q^*(i = 1, \ldots ,n)$, and $c \in {F_q}$. If \[ \frac {1} {{{d_1}}} + \frac {1} {{{d_2}}} + \cdots + \frac {1} {{{d_n}}} > b \geq 1\] for some positive integer $b$, we prove that ${q^b}|N$. This result is an improvement of the theorem that $p|N$ obtained by B. Morlaye [7] and also by J. R. Joly [3].References
- James Ax, Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261. MR 160775, DOI 10.2307/2373163
- Kenneth F. Ireland and Michael I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. MR 661047
- Jean-René Joly, Équations et variétés algébriques sur un corps fini, Enseign. Math. (2) 19 (1973), 1–117 (French). MR 327723
- Nicholas M. Katz, On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499. MR 288099, DOI 10.2307/2373389 V. A. Lebesgue, Recherches sur les nombres, J. Math. Pures Appl. 1 (1832), 11-111; 2 (1832), 253-292; 3 (1832), 113-144.
- Rudolf Lidl and Harald Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. MR 746963
- Bernard Morlaye, Équations diagonales non homogènes sur un corps fini, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1545–A1548 (French). MR 282948
- Wolfgang M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR 0429733
- Qi Sun and Da Qing Wan, On the solvability of the equation $\sum ^n_{i=1}x_i/d_i\equiv 0\;(\textrm {mod}\,1)$ and its application, Proc. Amer. Math. Soc. 100 (1987), no. 2, 220–224. MR 884454, DOI 10.1090/S0002-9939-1987-0884454-6
- Da Qing Wan, An elementary proof of a theorem of Katz, Amer. J. Math. 111 (1989), no. 1, 1–8. MR 980296, DOI 10.2307/2374476 E. Warning, Bermerkung zur Vorstehenden Arbeit von Herr Chevalley, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 76-83.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1049-1052
- MSC: Primary 11T41
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954981-2
- MathSciNet review: 954981