Modular group algebras of $N$-groups
HTML articles powered by AMS MathViewer
- by William Ullery
- Proc. Amer. Math. Soc. 103 (1988), 1053-1057
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954982-4
- PDF | Request permission
Abstract:
For a prime $p$, let $F$ be the field with $p$ elements and let $G$ be a reduced $p$-primary abelian $N$-group. If $FG \cong FH$ for some group $H$, then it is shown that $G \cong H$.References
- S. D. Berman and T. Ž. Mollov, The group rings of abelian $p$-groups of arbitrary power, Mat. Zametki 6 (1969), 381–392 (Russian). MR 254155
- Donna Beers, Fred Richman, and Elbert A. Walker, Group algebras of abelian groups, Rend. Sem. Mat. Univ. Padova 69 (1983), 41–50. MR 716984
- Paul F. Dubois and Sudarshan K. Sehgal, Another proof of the invariance of Ulm’s functions in commutative modular group rings, Math. J. Okayama Univ. 15 (1971/72), 137–139. MR 318345
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Paul Hill, The classification of $N$-groups, Houston J. Math. 10 (1984), no. 1, 43–55. MR 736574
- Warren May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139–149. MR 233903, DOI 10.1090/S0002-9947-1969-0233903-9
- Warren May, Modular group algebras of totally projective $p$-primary groups, Proc. Amer. Math. Soc. 76 (1979), no. 1, 31–34. MR 534384, DOI 10.1090/S0002-9939-1979-0534384-X —, Modular group algebras of simply presented abelian groups, preprint.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1053-1057
- MSC: Primary 20K10; Secondary 16A27, 20C07
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954982-4
- MathSciNet review: 954982