Finite extensions of rings
HTML articles powered by AMS MathViewer
- by Barbara Cortzen and Lance W. Small
- Proc. Amer. Math. Soc. 103 (1988), 1058-1062
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954983-6
- PDF | Request permission
Abstract:
The paper concerns some cases of ring extensions $R \subset S$, where $S$ is finitely generated as a right $R$-module and $R$ is right Noetherian. In ${\text {\S }}1$ it is shown that if $R$ is a Jacobson ring, then so is $S$, with the converse true in the ${\text {PI}}$ case. In ${\text {\S }}2$ we show that if $S$ is semiprime ${\text {PI}}$, $R$ must also be left (as well as right) Noetherian and $S$ is finitely generated as a left .$R$-module. ${\text {\S }}3$ contains a result on $E$-rings.References
- S. A. Amitsur and L. W. Small, Prime ideals in PI rings, J. Algebra 62 (1980), no. 2, 358–383. MR 563234, DOI 10.1016/0021-8693(80)90188-X
- Jan-Erik Björk, Noetherian and Artinian chain conditions of associative rings, Arch. Math. (Basel) 24 (1973), 366–378. MR 344286, DOI 10.1007/BF01228225
- William D. Blair, Right Noetherian rings integral over their centers, J. Algebra 27 (1973), 187–198. MR 325679, DOI 10.1016/0021-8693(73)90173-7
- Gérard Cauchon, Anneaux semi-premiers, noethériens, à identités polynômiales, Bull. Soc. Math. France 104 (1976), no. 1, 99–111. MR 407076
- P. M. Cohn, Quadratic extensions of skew fields, Proc. London Math. Soc. (3) 11 (1961), 531–556. MR 136633, DOI 10.1112/plms/s3-11.1.531
- Robert Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR 0352177
- I. N. Herstein and Lance W. Small, An extension of a theorem of Schur, Linear and Multilinear Algebra 3 (1975/76), no. 1-2, 41–43. Collection of articles dedicated to Olga Taussky-Todd. MR 389941, DOI 10.1080/03081087508817090
- J. C. Robson and Lance W. Small, Liberal extensions, Proc. London Math. Soc. (3) 42 (1981), no. 1, 87–103. MR 602124, DOI 10.1112/plms/s3-42.1.87
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- William Schelter, Non-commutative affine P.I. rings are catenary, J. Algebra 51 (1978), no. 1, 12–18. MR 485980, DOI 10.1016/0021-8693(78)90131-X
- J. T. Stafford, Nonholonomic modules over Weyl algebras and enveloping algebras, Invent. Math. 79 (1985), no. 3, 619–638. MR 782240, DOI 10.1007/BF01388528
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1058-1062
- MSC: Primary 16A38; Secondary 16A21, 16A33, 16A56
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954983-6
- MathSciNet review: 954983