ABSTRACT. The paper concerns some cases of ring extensions $R \subseteq S$, where
S is finitely generated as a right R-module and R is right Noetherian. In §1
it is shown that if R is a Jacobson ring, then so is S, with the converse true
in the PI case. In §2 we show that if S is semiprime PI, R must also be left
(as well as right) Noetherian and S is finitely generated as a left R-module.
§3 contains a result on E-rings.

In this paper we collect some results concerning the relationship between rings
$R \subseteq S$, where S is finitely generated as a right R-module. For the special cases
in which the finite extension S of R is normalizing or centralizing, many theorems
have been proved. In this paper we obtain some results of a more general nature.

1. Jacobson property. We call a ring R a Jacobson ring if every prime ideal
of R is an intersection of primitive ideals. Let $J(R)$ denote the Jacobson radical of
R and $N(R)$ the lower nilradical, that is, the intersection of all the prime ideals of
R. With this notation, the alternative formulations of the Jacobson property are:

$J(R/P) = 0$ for all prime ideals P of R.

$J(R) = N(R)$ for every homomorphic image R of R.

If R is PI or right Noetherian, then every nil ideal is contained in $N(R)$, and the
last condition is equivalent to:

$J(R)$ is nil for every homomorphic image R of R.

THEOREM 1. Let R be a right Noetherian subring of a ring S, such that S
is finitely generated as a right R-module. Then, if R is Jacobson, so must S be
Jacobson.

PROOF. Given any prime ideal P of S, we want to show that $J(S/P) = 0$. Since
the hypothesis of the theorem holds for the ring embedding $R/P \cap R \subseteq S/P$, the
problem reduces to the case where S is a prime ring. We therefore want to show
that, if S is prime, then $J(S) = 0$.

Suppose $J(S) \neq 0$. By a standard result on Goldie rings, $J(S)$ must contain a
regular element, say a. Since S_R is finitely generated and R is right Noetherian,
there is a positive integer n, such that the elements $1, a, a^2, \ldots, a^n$ are integrally
dependent over R. That is, for some $r_{n-1}, \ldots, r_1, r_0 \in R$, we have $a^n + a^{n-1}r_{n-1} +
\cdots + ar_1 + r_0 = 0$. If n is minimal, then, since a is regular, $r_0 \neq 0$. But then
$r_0 \in J(S) \cap R$. Hence $J(S) \cap R \neq 0$.

We claim that $J(S) \cap R \subseteq J(R)$. Let $x \in J(S) \cap R$ and suppose $x \notin J(R)$.
Then there is an element $r \in R$ for which $1 - rx$ is not invertible in R. But $1 - rx$ is

Received by the editors March 31, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A38, 16A33, 16A21.
invertible in S, say $(1 - rx)s = 1$ for some $s \in S$. Since s is integral over R we have $s^k + s^{k-1}a_{k-1} + \cdots + sa_1 + a_0 = 0$ for some $a_0, a_1, \ldots, a_{k-1} \in R$. Multiplying this equation by $(1 - rx)^{k-1}$ and solving for s yields:

$$s = -[a_{k-1} + (1 - rx)a_{k-2} + \cdots + (1 - rx)^{k-1}a_0] \in R,$$

which is a contradiction. Consequently, $J(S) \cap R \subset J(R)$.

Because R is right Noetherian and Jacobson, we have that $J(R) = N(R)$, the maximal nilpotent ideal of R. Hence $J(S) \cap R$ is a nonzero nilpotent ideal of R.

Consider the ring embedding $R/J(S) \cap R \subset S/J(S)$. This is a finite ring extension. Invoking some results on Krull dimension (as defined in [6]), we shall obtain a contradiction. We use notation $|R|$ for Krull dimension of the ring R, and $|M|_R$ for Krull dimension of the R-module M.

On one hand, since $J(S) \neq 0$ and S is prime, $J(S)$ contains a regular element and therefore $|S/J(S)|_R < |S|_R = |R|$.

On the other hand, since $J(S) \cap R$ is nilpotent, we have:

$$|R| = |R/J(S) \cap R| = |S/J(S)|_{R/J(S) \cap R} = |S/J(S)|_R,$$

which contradicts the inequality above.

The proof is now complete, since the assumption $J(S) \neq 0$ led to a contradiction.

In the PI case, the converse of Theorem 1 holds. To prove this, note that the Jacobson property goes up and down for the following two classes of ring extensions. First, if S is a liberal extension of R, that is, if S is finitely generated as a module over R by elements that centralize R, then S is Jacobson if and only if R is Jacobson (Robson and Small [8]). The second type of extensions that we need is considered in the following lemma, half of which follows immediately from Blair's results in [3].

Lemma. Suppose R is a central subring of a PI ring S and that S is integral over R. Then S is Jacobson if and only if R is Jacobson.

Proof. Blair [3] proved that, if S is integral over its subring R, for every prime ideal P of R, there is a prime ideal Q of S with $Q \cap R = P$. Moreover, $J(R) = J(S) \cap R$.

If S is a Jacobson ring, let P be a prime ideal of R and Q a prime of S lying over P. The hypothesis of the lemma carries over to the ring extension $R/P \subset S/Q$ and we have $J(R/P) = J(S/Q) \cap R/P = 0$. Since P was an arbitrary prime ideal of R, R is Jacobson. This part of the lemma did not require the hypothesis that S be PI.

Conversely, let R be Jacobson. To show that S is Jacobson, it is enough to prove that $J(S/Q)$ is nil for every ideal Q of S. Since the hypothesis of the lemma holds for the ring embedding $R/Q \cap R \subset S/Q$, it is enough to show that if R is Jacobson, then $J(S)$ is nil. Let $x \in J(S)$. $R(x)$, the ring generated by R and x, is a Jacobson ring, since it is a homomorphic image of the polynomial ring $R[X]$. As in the proof of Theorem 1, integrality of $R(x)$ over R gives $J(S) \cap R(x) \subset J(R(x))$. Consequently, $x \in J(R(x))$ and x is nilpotent. Thus $J(S)$ is nil. □
THEOREM 2. Let \(R \subset S \) be rings such that \(R \) is right Noetherian, \(S \) is PI and finitely generated as a right \(R \)-module. Then \(S \) is Jacobson if and only if \(R \) is Jacobson.

PROOF. In view of Theorem 1, it is enough to show that “\(S \) Jacobson” implies “\(R \) Jacobson”.

If \(P \) is a prime ideal of \(R \), there is a prime ideal \(P' \) of \(S \) for which \(P' \cap R \subset P \) (take \(P' \) to be maximal among all ideals \(I \) of \(S \) for with \(I \cap R \subset P \)). Now consider the ring embedding of \(R/P' \cap R \subset S/P' \). If \(R/P' \cap R \) is Jacobson, then so is \(R/P \). Thus one can replace \(S \) by \(S/P' \) and assume that \(S \) is prime.

By Posner’s theorem, \(S \) has a classical ring of quotients \(Q \), which is a finite-dimensional central simple algebra, \(Q = M_n(D) \), where \(D \) is a division ring finite-dimensional over its center. If \(Z \) is the center of \(D \) and \(K \) a maximal subfield of \(D \), then we have \(S \subset Q \subset M_n(D) \otimes_Z K = M_m(K) \) for some \(m \). Thus every element of \(S \) can be considered as a matrix and has a (reduced) characteristic polynomial with coefficients in \(Z \). Let \(T \) denote the subalgebra of \(M_m(K) \) generated by coefficients of these polynomials and let \(TS \) denote the subalgebra of \(M_n(D) \) generated by \(T \) and \(S \), \(TR \) the subalgebra generated by \(T \) and \(R \). (For the construction and properties of the reduced trace ring \(TS \), see [10 and 1].)

Consider the diagram

\[
\begin{array}{ccc}
TR & & TS \\
\downarrow & & \downarrow \\
R & & S \\
\end{array}
\]

The path we take in proving the implication “\(S \) Jacobson \(\Rightarrow \) \(R \) Jacobson” is indicated by bold line segments. Note that all rings in the diagram are PI.

It is well known that, if \(S \) is right Noetherian, then \(TS \) is a finite right \(S \)-module [1]. By Theorem 1, \(TS \) is Jacobson. It is also well known that \(TS \) is integral over its center [1], and therefore also over \(T \).

By the lemma above, \(T \) must be Jacobson. \(TR \) is integral over \(T \) (as a subring of \(TS \)), and so is Jacobson. Since \(TS \) is a finite \(S \)-module, it is also finitely generated over \(R \), as is its \(R \)-submodule \(TR \). Thus \(TR \) is a liberal extension of \(R \), and consequently \(R \) is Jacobson. This completes the proof. \(\Box \)

2. Changing sides. We shall be concerned now with some situations in which a right-hand property of a ring can be transferred to a left-hand one. The results we obtain will be of a going-down type. We cite two results which will be used in the proofs. The first of these results was proved by Cauchon [4] for the prime case. To extend this to the semiprime case is routine (see [9, pp. 225–226]). The result is

(i) A semiprime PI ring which satisfies ACC on ideals is right (and left) Noetherian.

The second result is due to Björk [2].

(ii) If \(R \) is a right Noetherian subring of a right artinian ring \(S \) such that \(S \) is finitely generated as a right \(R \)-module, then \(R \) is right artinian.
THEOREM 3. Let S be a semiprime PI ring and R a right Noetherian subring of S such that S is a finitely generated right R-module. Then S is finitely generated as a left R-module and R is left Noetherian.

PROOF. Consider the inclusion of rings: $R[x] \subset R + xS[x] \subset S[x]$. Since S_R is finitely generated, S is right Noetherian. Therefore $R[x]$ and $S[x]$ are also right Noetherian, as is the finitely generated $R[x]$-module $R + xS[x]$. Since S has no nonzero nil ideals, $S[x]$ is semiprime. Because $S[x]$ is a PI ring, so is its subring $R + xS[x]$. $R + xS[x]$ is also semiprime, since it contains an ideal of a semiprime ring.

By the cited result (i) above, $R + xS[x]$ is left (as well as right) Noetherian. But then R, as a homomorphic image of $R + xS[x]$ must also be Noetherian.

The ideal $xS[x]$ of $R + xS[x]$ is finitely generated on the left, since $R + xS[x]$ is left Noetherian. Its homomorphic image $xS[x]/x^2S[x]$ has the same $R + xS[x]$-module structure as the R-module structure of S. Thus S is a finitely generated left R-module. □

COROLLARY. Let S be a primitive PI ring and R a right Noetherian subring of S such that S is a finitely generated right R-module. Then R is left and right artinian and S is finitely generated as a left R-module.

PROOF. By a famous theorem of Kaplansky, S is a simple algebra, finite-dimensional over its center. By Theorem 3, R is both left and right Noetherian and S is a finitely generated left R-module. By the cited result (ii) of Björk we get that R is left and right artinian. □

The following example shows that the condition that S be a PI ring is necessary.

P. M. Cohn [5] has constructed a pair of division rings $D' \subset D$ such that D is a finite-dimensional right vector space over D' but is infinite-dimensional as a left vector space over D'.

Let

$$R = \begin{bmatrix} D' & D \\ 0 & D \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} D & D \\ D & D \end{bmatrix}.$$

Thus S is a simple artinian ring and, as is easily checked, is finitely generated both as a left and right R-module. Moreover, R is right Noetherian. However, R is right artinian, but is not left artinian (nor left Noetherian).

3. E-rings. A ring S has been defined to be an E-ring [7] if its primitive ideals are coartinian, that is, if S/P is simple artinian for every primitive ideal P of S. Examples of such E-rings are Noetherian PI rings and, more generally, all fully bounded Noetherian rings.

The following result is interesting in view of Stafford’s example in [11] of prime Noetherian rings $R \subset S$ and a simple S-module which has an infinite length over R, even though S is finitely generated both as a left and right R-module.

THEOREM 4. Let S be an E-ring and R a right Noetherian subring of S such that S is finitely generated as a right R-module. Then every simple right S-module has finite length as a right R-module. Hence every right S-module of finite length has finite length as a right R-module.

PROOF. Let M be a simple right S-module and set $A = \text{Ann}_S M$, the annihilator of M in S. Then A is a primitive ideal of S, and $R/A \cap R$ is a subring of the simple
artinian ring S/A. Clearly S/A is finitely generated as a right $R/A \cap R$-module. By Björk's result, $R/A \cap R$ is right artinian. Since M is finitely generated over $R/A \cap R$, M has finite length as an R-module. □

REFERENCES

DEPARTMENT OF MATHEMATICS, DEPAUL UNIVERSITY, CHICAGO, ILLINOIS 60614

DEPARTMENT OF MATHEMATICS C-012, UNIVERSITY OF CALIFORNIA AT SAN DIEGO, LA JOLLA, CALIFORNIA 92093

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use