## Convergence and divergence almost everywhere of spherical means for radial functions

HTML articles powered by AMS MathViewer

- by Yūichi Kanjin
- Proc. Amer. Math. Soc.
**103**(1988), 1063-1069 - DOI: https://doi.org/10.1090/S0002-9939-1988-0954984-8
- PDF | Request permission

## Abstract:

Let $d > 1$. It will be shown that the maximal operator ${S^*}$ of spherical means ${S_R},R > 0$, is bounded on ${L^p}({{\mathbf {R}}^d})$ radial functions when $2d/(d + 1) < p < 2d/(d - 1)$, and it implies that, for every ${L^p}({{\mathbf {R}}^d})$ radial function $f(t),{S_R}f(t)$ converges to $f(t)$ for a.e. $t \in {{\mathbf {R}}^d}$ when $2d/(d + 1) < p \leq 2$. Also, it will be proved that there is an ${L^{2d/(d + 1)}}({R^d})$ radial function $f(t)$ with compact support such that ${S_R}f(t)$ diverges for a.e. $t \in {R^d}$.## References

- V. M. Badkov,
*Approximate properties of Fourier series in orthogonal polynomials*, Uspekhi Mat. Nauk**33**(1978), no. 4(202), 51–106, 255 (Russian). MR**510670** - Sagun Chanillo,
*The multiplier for the ball and radial functions*, J. Funct. Anal.**55**(1984), no. 1, 18–24. MR**733030**, DOI 10.1016/0022-1236(84)90015-6 - Charles Fefferman,
*The multiplier problem for the ball*, Ann. of Math. (2)**94**(1971), 330–336. MR**296602**, DOI 10.2307/1970864 - Carl S. Herz,
*On the mean inversion of Fourier and Hankel transforms*, Proc. Nat. Acad. Sci. U.S.A.**40**(1954), 996–999. MR**63477**, DOI 10.1073/pnas.40.10.996 - Satoru Igari,
*On the multipliers of Hankel transform*, Tohoku Math. J. (2)**24**(1972), 201–206. MR**324332**, DOI 10.2748/tmj/1178241530 - Carlos E. Kenig and Peter A. Tomas,
*The weak behavior of spherical means*, Proc. Amer. Math. Soc.**78**(1980), no. 1, 48–50. MR**548082**, DOI 10.1090/S0002-9939-1980-0548082-8 - Carlos E. Kenig and Peter A. Tomas,
*Maximal operators defined by Fourier multipliers*, Studia Math.**68**(1980), no. 1, 79–83. MR**583403**, DOI 10.4064/sm-68-1-79-83 - Christopher Meaney,
*Divergent Jacobi polynomial series*, Proc. Amer. Math. Soc.**87**(1983), no. 3, 459–462. MR**684639**, DOI 10.1090/S0002-9939-1983-0684639-4 - Christopher D. Sogge,
*On the convergence of Riesz means on compact manifolds*, Ann. of Math. (2)**126**(1987), no. 2, 439–447. MR**908154**, DOI 10.2307/1971356 - Robert J. Stanton and Peter A. Tomas,
*Polyhedral summability of Fourier series on compact Lie groups*, Amer. J. Math.**100**(1978), no. 3, 477–493. MR**622197**, DOI 10.2307/2373834 - A. Zygmund,
*Trigonometric series: Vols. I, II*, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR**0236587**

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**103**(1988), 1063-1069 - MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954984-8
- MathSciNet review: 954984