Convergence and divergence almost everywhere of spherical means for radial functions
HTML articles powered by AMS MathViewer
- by Yūichi Kanjin
- Proc. Amer. Math. Soc. 103 (1988), 1063-1069
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954984-8
- PDF | Request permission
Abstract:
Let $d > 1$. It will be shown that the maximal operator ${S^*}$ of spherical means ${S_R},R > 0$, is bounded on ${L^p}({{\mathbf {R}}^d})$ radial functions when $2d/(d + 1) < p < 2d/(d - 1)$, and it implies that, for every ${L^p}({{\mathbf {R}}^d})$ radial function $f(t),{S_R}f(t)$ converges to $f(t)$ for a.e. $t \in {{\mathbf {R}}^d}$ when $2d/(d + 1) < p \leq 2$. Also, it will be proved that there is an ${L^{2d/(d + 1)}}({R^d})$ radial function $f(t)$ with compact support such that ${S_R}f(t)$ diverges for a.e. $t \in {R^d}$.References
- V. M. Badkov, Approximate properties of Fourier series in orthogonal polynomials, Uspekhi Mat. Nauk 33 (1978), no. 4(202), 51–106, 255 (Russian). MR 510670
- Sagun Chanillo, The multiplier for the ball and radial functions, J. Funct. Anal. 55 (1984), no. 1, 18–24. MR 733030, DOI 10.1016/0022-1236(84)90015-6
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996–999. MR 63477, DOI 10.1073/pnas.40.10.996
- Satoru Igari, On the multipliers of Hankel transform, Tohoku Math. J. (2) 24 (1972), 201–206. MR 324332, DOI 10.2748/tmj/1178241530
- Carlos E. Kenig and Peter A. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), no. 1, 48–50. MR 548082, DOI 10.1090/S0002-9939-1980-0548082-8
- Carlos E. Kenig and Peter A. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), no. 1, 79–83. MR 583403, DOI 10.4064/sm-68-1-79-83
- Christopher Meaney, Divergent Jacobi polynomial series, Proc. Amer. Math. Soc. 87 (1983), no. 3, 459–462. MR 684639, DOI 10.1090/S0002-9939-1983-0684639-4
- Christopher D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. (2) 126 (1987), no. 2, 439–447. MR 908154, DOI 10.2307/1971356
- Robert J. Stanton and Peter A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), no. 3, 477–493. MR 622197, DOI 10.2307/2373834
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1063-1069
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954984-8
- MathSciNet review: 954984