Banach space properties of Ciesielski-Pol’s $C(K)$ space
HTML articles powered by AMS MathViewer
- by G. Godefroy, J. Pelant, J. H. M. Whitfield and V. Zizler
- Proc. Amer. Math. Soc. 103 (1988), 1087-1093
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954988-5
- PDF | Request permission
Abstract:
A $C(K)$ space ${X_0}$ which Ciesielski and Pol show does not continuously linearly inject into any ${c_0}(\Gamma )$ has an equivalent ${C^\infty }$-norm, is Lipschitz equivalent to a ${c_0}(\Gamma )$, and the density character of ${X_0}$ is equal to the ${w^*}$-density character of $X_0^*$.References
- Israel Aharoni and Joram Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), no. 2, 281–283. MR 482074, DOI 10.1090/S0002-9904-1978-14475-9
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 228983, DOI 10.2307/1970554
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492
- Krzysztof Ciesielski and Roman Pol, A weakly Lindelöf function space $C(K)$ without any continuous injection into $c_0(\Gamma )$, Bull. Polish Acad. Sci. Math. 32 (1984), no. 11-12, 681–688 (English, with Russian summary). MR 786192
- F. K. Dashiell and J. Lindenstrauss, Some examples concerning strictly convex norms on $C(K)$ spaces, Israel J. Math. 16 (1973), 329–342. MR 348466, DOI 10.1007/BF02756712
- Robert Deville, Problèmes de renormages, J. Funct. Anal. 68 (1986), no. 2, 117–129 (French, with English summary). MR 852656, DOI 10.1016/0022-1236(86)90001-7
- G. Godefroy, S. Troyanski, J. Whitfield, and V. Zizler, Three-space problem for locally uniformly rotund renormings of Banach spaces, Proc. Amer. Math. Soc. 94 (1985), no. 4, 647–652. MR 792277, DOI 10.1090/S0002-9939-1985-0792277-X
- S. P. Gul′ko, The structure of spaces of continuous functions and their hereditary paracompactness, Uspekhi Mat. Nauk 34 (1979), no. 6(210), 33–40 (Russian). MR 562814
- W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219–230. MR 417760, DOI 10.1007/BF02882239
- Joram Lindenstrauss, Weakly compact sets—their topological properties and the Banach spaces they generate, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 235–273. MR 0417761
- S. L. Trojanski, Equivalent norms and minimal systems in nonseparable Banach spaces, Studia Math. 43 (1972), 125–138 (Russian). MR 324382
- L. Vašák, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), no. 1, 11–19. MR 646957, DOI 10.4064/sm-70-1-11-19
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1087-1093
- MSC: Primary 46E99; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954988-5
- MathSciNet review: 954988