A projection formula for the Askey-Wilson polynomials and an application
HTML articles powered by AMS MathViewer
- by Mizan Rahman
- Proc. Amer. Math. Soc. 103 (1988), 1099-1107
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954990-3
- PDF | Request permission
Abstract:
A projection formula for ${p_n}(x;a,b,c,d|q)$, the Askey-Wilson polynomials, is obtained by using a generalization of Askey and Wilson’s $q$-beta integral. The result is used to find a $q$-analogue of the Feldheim-Vilenkin formula for ultraspherical polynomials. A $q$-analogue of the ultraspherical polynomials, other than the one due to Rogers, is also introduced.References
- Richard Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR 0481145
- Richard Askey, Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum, SIAM J. Math. Anal. 5 (1974), 119–124. MR 385197, DOI 10.1137/0505013
- Richard Askey and James Fitch, Integral representations for Jacobi polynomials and some applications, J. Math. Anal. Appl. 26 (1969), 411–437. MR 237847, DOI 10.1016/0022-247X(69)90165-6
- R. Askey and Mourad E. H. Ismail, A generalization of ultraspherical polynomials, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 55–78. MR 820210 —, The Rogers $q$-ultraspherical polynomials, Approximation Theory. III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 175-182.
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI 10.1090/memo/0319
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR 0185155 A. Erdélyi, et al., Higher transcendental functions, vol. 2, McGraw-Hill, New York, 1953. L. Fejér, Sur le développement d’une fonction arbitraire suivant les fonctions de Laplace, C. R. Acad. Sci. Paris 146 (1908), 224-225; reproduced in Gesammelte Arbeiten I. 319-322.
- Ervin Feldheim, On the positivity of certain sums of ultraspherical polynomials, J. Analyse Math. 11 (1963), 275–284. MR 158107, DOI 10.1007/BF02789988
- George Gasper and Mizan Rahman, Positivity of the Poisson kernel for the continuous $q$-Jacobi polynomials and some quadratic transformation formulas for basic hypergeometric series, SIAM J. Math. Anal. 17 (1986), no. 4, 970–999. MR 846401, DOI 10.1137/0517069
- T. H. Koornwinder, The addition formula for Jacobi polynomials. I. Summary of results, Indag. Math. 34 (1972), 188–191. Nederl. Akad. Wetensch. Proc. Ser. A 75. MR 0308476
- Tom Koornwinder, Jacobi polynomials. II. An analytic proof of the product formula, SIAM J. Math. Anal. 5 (1974), 125–137. MR 385198, DOI 10.1137/0505014
- Tom Koornwinder, Jacobi polynomials. III. An analytic proof of the addition formula, SIAM J. Math. Anal. 6 (1975), 533–543. MR 447659, DOI 10.1137/0506048
- Thomas P. Laine, Projection formulas and a new proof of the addition formula for the Jacobi polynomials, SIAM J. Math. Anal. 13 (1982), no. 2, 324–330. MR 647130, DOI 10.1137/0513024
- B. Nassrallah and Mizan Rahman, Projection formulas, a reproducing kernel and a generating function for $q$-Wilson polynomials, SIAM J. Math. Anal. 16 (1985), no. 1, 186–197. MR 772878, DOI 10.1137/0516014
- Mizan Rahman, An integral representation of a $_{10}\varphi _9$ and continuous bi-orthogonal $_{10}\varphi _9$ rational functions, Canad. J. Math. 38 (1986), no. 3, 605–618. MR 845667, DOI 10.4153/CJM-1986-030-6
- Mizan Rahman, A nonnegative representation of the linearization coefficients of the product of Jacobi polynomials, Canadian J. Math. 33 (1981), no. 4, 915–928. MR 634149, DOI 10.4153/CJM-1981-072-9
- Mizan Rahman, A product formula for the continuous $q$-Jacobi polynomials, J. Math. Anal. Appl. 118 (1986), no. 2, 309–322. MR 852163, DOI 10.1016/0022-247X(86)90265-9
- D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53 (1951), 158–180. MR 41981, DOI 10.1112/plms/s2-53.2.158
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- N. Ya. Vilenkin, Some relations for Gegenbauer functions, Uspehi Mat. Nauk (N.S.) 13 (1958), no. 3(81), 167–172 (Russian). MR 0095986
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1099-1107
- MSC: Primary 33A65; Secondary 05A30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954990-3
- MathSciNet review: 954990