Cesàro and Borel-type summability
HTML articles powered by AMS MathViewer
- by David Borwein and Tom Markovich
- Proc. Amer. Math. Soc. 103 (1988), 1108-1112
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954991-5
- PDF | Request permission
Abstract:
Though summability of a series by the Cesàro method ${C_p}$ does not in general imply its summability by the Borel-type method $(B,\alpha ,\beta )$, it is shown that the implication holds under an additional condition.References
- D. Borwein, A Tauberian theorem for Borel-type methods of summability, Canadian J. Math. 21 (1969), 740–747. MR 243233, DOI 10.4153/CJM-1969-083-7 D. Borwein and T. Markovich, A Tauberian theorem concerning Borel-type and Cesàro methods of summability, (submitted).
- Gerhard Faulhaber, Äquivalenzsätze für die Kreisverfahren der Limitierungstheorie, Math. Z. 66 (1956), 34–52 (German). MR 82572, DOI 10.1007/BF01186593 G. H. Hardy and J. E. Littlewood, Theorems concerning the summability of series by Borel’s exponential method, Rend. Circ. Mat. Palermo 41 (1916), 36-53.
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- J. M. Hyslop, Note on certain related conditions in the theory of Cesàro summability, Proc. Edinburgh Math. Soc. (2) 6 (1940), 166–171. MR 2638, DOI 10.1017/S001309150002469X —, The generalisation of a theorem on Borel summability, Proc. London Math. Soc. (2) 41 (1936), 243-256.
- B. Kwee, An improvement on a theorem of Hardy and Littlewood, J. London Math. Soc. (2) 28 (1983), no. 1, 93–102. MR 703468, DOI 10.1112/jlms/s2-28.1.93
- Amram Meir, Tauberian constants for a family of transformations, Ann. of Math. (2) 78 (1963), 594–599. MR 166519, DOI 10.2307/1970544
- V. Swaminathan, A note on the family $F(a,\,q)$ of summability methods, Math. Z. 138 (1974), 119–122. MR 348330, DOI 10.1007/BF01214228
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1108-1112
- MSC: Primary 40G05; Secondary 40E05, 40G10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954991-5
- MathSciNet review: 954991