Linear independence of iterates and entire solutions of functional equations
HTML articles powered by AMS MathViewer
- by Jens Peter Reus Christensen and Pal Fischer
- Proc. Amer. Math. Soc. 103 (1988), 1120-1124
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954993-9
- PDF | Request permission
Abstract:
A classical result of Pólya concerning the growth of Nevanlinna’s characteristics of composite functions is used to prove linear independence of some iterates. The same result of Pólya is also used to show the nonexistence of entire solutions of the Feigenbaum functional equation.References
- Michel Cosnard, Étude des solutions de l’équation fonctionnelle de Feigenbaum, Bifurcation, ergodic theory and applications (Dijon, 1981) Astérisque, vol. 98, Soc. Math. France, Paris, 1982, pp. 143–162 (French, with English summary). MR 724445
- P. Fischer, The Feigenbaum functional equation and periodic points, Aequationes Math. 30 (1986), no. 2-3, 202–207. MR 843661, DOI 10.1007/BF02189926
- P. Fischer, Feigenbaum functional equations as dynamical systems, Chaos, fractals, and dynamics (Guelph, Ont., 1981/1983) Lecture Notes in Pure and Appl. Math., vol. 98, Dekker, New York, 1985, pp. 183–188. MR 813518 —, On the general unimodal solution of the Feigenbaum functional equation and related classes of solutions (to appear).
- V. Ganapathy Iyer, On a functional equation. II, Indian J. Math. 2 (1960), 1–7. MR 111953
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Oscar E. Lanford III, Smooth transformations of intervals, Bourbaki Seminar, Vol. 1980/81, Lecture Notes in Math., vol. 901, Springer, Berlin-New York, 1981, pp. 36–54. MR 647487
- Oscar E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 427–434. MR 648529, DOI 10.1090/S0273-0979-1982-15008-X G. Pólya, On an integral function of an integral function, J. London Math. Soc. 1 (1926), 12-15.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1120-1124
- MSC: Primary 30D05; Secondary 30D20, 39B10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0954993-9
- MathSciNet review: 954993