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ABSTRACT. We show that the generalized Riemann integral can be defined

by means of gage functions which are upper semicontinuous when restricted

to a suitable subset whose complement has measure zero.

By introducing ¿-fine partitions for a positive function 6 (see below), Henstock

and Kurzweil obtained a strikingly simple Riemannian definition of the Denjoy-

Peron integral (cf. Definition 1 and [S, Chapter VIII]). In their definition, the

function ê is completely arbitrary, and it is not clear how complicated it need be (a

question of P. S. Bullen—see [Q]). The purpose of this note is to establish that 6 can

be always selected so that it is upper semicontinuous when restricted to a suitable

subset whose complement has measure zero (cf. [Pa, Lemma 3]). The proof is

quite simple: we show first that such a <5 can be chosen if the integrand is Lebesgue

integrable, and then we follow the constructive Denjoy definition, observing that

the upper semicontinuity property of 6 is preserved at the inductive step. We also

show that for a bounded Lebesgue integrable function, a gage 6 can be selected so

that it is upper semicontinuous everywhere (cf. [FM, Example 1]).

The author is obliged to J. Foran for pointing out a serious error in the preprint

of this paper.

By R and R+ we denote the set of all real and all positive real numbers, respec-

tively. Unless stated otherwise, all functions in this paper are real-valued. When no

confusion is possible, we denote by the same symbol a function on a set E, as well

as its restrictions to various subsets of E. An interval is a compact nondegenerate

subinterval of R. A collection of intervals whose interiors are disjoint is called a

nonoverlapping collection. If E C R, then cl(¿?), int(¿£), d(E), and \E\ denote,

respectively, the closure, interior, diameter, and outer Lebesgue measure of E. A

function 6 on an interval A is called nearly upper semicontinuous if there is a set

H C A such that |.4 — ¿¿| = 0 and 6 \ H is upper semicontinuous.

A subpartition of an interval A is a collection P = {(Ai,xi),..., (Ap, xp)} where

Ai,... ,AP are nonoverlapping subintervals of A, and x¿ E Ai, i = 1,... ,p. If, in

addition, U?=i -^i = A we sav tnat; P 1S a partition of A. Given a 6: A —* R+,

we say that a subpartition P is 8-fine whenever d(Ai) < <5(x¿) for i = 1,... ,p. An

easy compactness argument shows that a ¿-fine partition of an interval A exists for

each ê : A —* R+.
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1162 W. F. PFEFFER

If / is a function on an interval A and P = {(Ai,Xi),..., (Ap,xp)} is a subpar-

tition of A, we let

a(f,P)=J2f^)\M-
i=l

1. DEFINITION (HENSTOCK-KURZWEIL). A function / on an interval A is

called integrable in A if there is a real number I with the following propety: given

£ > 0, we can find a 8 : A —► R+ such that \o(f, P) — I\ < £ for each ¿-fine partition

Pof A
Since ¿-fine partitions of an interval A exist for each 8 : A —> R+, it is easy to

see that the number I from the previous definition is determined uniquely by the

integrable function /. It is called the integral of / over A, denoted by fA f, or Ja f

if A = [a,b]. The family of all integrable functions on A is denoted by 3?(A).

A detailed study of the integral defined above can be found in [H and K]; an

elementary exposition is given in [Ml and Pi]. In particular, it is shown in [K,

Theorem 4.14 and Pi, Corollary B5] that the integral coincides with the Denjoy-

Perron integral (see [S, Chapter VIII, Theorems (3.9) and (3.11)]). As this result

is important for our purposes, we formulate it precisely.

The family of all Denjoy-Perron integrable functions on an interval A is denoted

by 3(A), and if / E 3(A), the symbol (D) fA f denotes the Denjoy-Perron integral

of / over A.

2. THEOREM (HensTOCK-Kurzweil). If A is an interval, then 31(A) =

3(A) and JAf= (D) ¡A f for each f E 3?(A).

The function ¿ from Definition 1 is often referred to as a gage associated to /

and £. For an integrable function / on an interval A and an e > 0, we denote

by A(/, A;e) the family of all gage functions associated to / and e. Since pos-

itive continuous functions on compact intervals are bounded away from zero, we

see immediately that / is Riemann integrable in the classical sense if and only if

A(/, A;e) contains a continuous gage for each e > 0. Our goal is to show that for

each £ > 0, the family A(f,A;e) always contains a nearly upper semicontinuous

gage. To this end, we denote by 3l*(A) the family of all / E 31(A) such that

A(f,A;£) contains a nearly upper semicontinuous function for each £ > 0, and we

show that 3?,(A) =3?(A).

3. LEMMA. Let h be a lower semicontinuous function on a set E C R, let

r\ > 0, and for each x E E, let 8(x) be the supremum of all numbers 8 E (0,1] such

that y E E and \y — x\ < 8 implies h(y) > h(x) — r). Then the function x t—» 8(x) is

upper semicontinuous on E.

PROOF. Proceeding towards a contradiction, suppose that there is an x E E

and a sequence {xn} in E such that lima;„ = x and lim¿(xn) > ¿(x) + a for some

a > 0. By the definition of 8(x), there is a y E E with \y — x\ < 8(x) + a/2 and

h(y) < h(x) — n. Choose a ß > 0 so that h(y) < h(x) — r¡ — ß, and find an xn for

which |a; — xn\ < a/2, 8(xn) > 8(x) + a, and h(xn) > h(x) — ß. Then

\y - xn\ < \y - x\ + \x - xn\ < 8(x) + a < 8(xn),

and hence h(y) > h(x„) —r¡> h(x) - r\ — ß; a contradiction.

If E is a Lebesgue measurable subset of R, we denote by 3f(E) the family of all

functions f on E for which the finite Lebesgue integral (L) fE f exists.
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4.  PROPOSITION.   If A is an interval, then 5?(A) c 31 »(A).

PROOF. Let / e 3f(A), £ > 0, and let r¡ = e/(\A\ + 1). There is an uper

semicontinuous function g: A —► [—oo,+oo), and a lower semicontinuous function

h: A —► (—oo,+00] such that g < f < h and (L) JA(h — g) < r\. Let E — {x E

A: h(x) < +00}, and let 8n be the positive upper semicontinuous function on E

associated to h \ E and 77 according to Lemma 3. If x E A — E, we select any

8n(x) > 0 so that h(y) > f(x) — r¡ for each y E A with \y — x\ < 8h(x). Since

|^4 — E\ = 0, we have defined a nearly upper semicontinuous function 8h : A —* R+.

Using — g instead of h, we define similarly a nearly upper semicontinuous function

8g: A —► R+, and set 8 = min(¿/l,¿9). Now if P = {(Ai,Xi),..., (Ap,xv)} is a

¿-fine partition of A, then g(x) < /(x¿) + n and h(x) > f(x¿) — 77 for each x E At,

i = l,...,p. Thus (L) ¡At g < (L) ¡Ai f < (L) ¡A. h, and

(L) f   g-r1\Ai\<f(xi)\Ai\<(L)f   h + r,\At\,        i=l,...,p.
JAi J Ai

It follows that

\a(f,P)-(L) f f\ <¿\f(xi)\Ai\-(L)f   f\
Ja ~~1 Ja,=i

v

<E   v\Ai\ + (L)j (h-g)j <£,
Ai

and we have / E 3f»(A).

If / E 3f(A) then, in general, A(/, A;e) may contain no gage which is a Baire

functions on the whole interval A (see [FM, Example 1]). However, a closer look at

the proof of Proposition 4 shows that A(f,A;e) contains an upper semicontinuous

gage for each £ > 0 whenever / has an upper semicontinuous majorant and a lower

semicontinuous minorant which are both finite. In particular, we have the following

corollary.

5. COROLLARY. If f is a bounded Lebesgue integrable function on an interval

A, then A(f, A;e) contains an upper semicontinuous gage for every e > 0.

6. REMARK. The proofs of Proposition 4 and Corollary 5 translate verbatim

to the higher dimensional Henstock-Kurzweil integrals, as well as to the integral

defined by McShane in [Ms]. Since the McShane integral coincides with that of

Lebesgue (see [Px, Corollary Bll or Ml, §8.3]), we see that it can be always

defined by means of nearly upper semicontinuous gages, which can be taken upper

semicontinuous whenever the integrand is bounded. This remains true even for a

general setting discussed in [AP], provided the underlying space is metrizable.

7. LEMMA.   LetA= [a,b] be an interval.

(i) The family 3?»(A) is a real vector space.

(ii) If f E3ê»(A), then f E3l»(B) for each subinterval B of A.
(iii)  If f E 3?»(A)  and £ > 0,  then there is a nearly upper semicontinuous

function 8 : A —* R+ such that
p

E
i=l

f(xi)\Ai\- f f\
Ja.

< £
'A,

for each 8-fine subpartition {(Ai,xi),... ,(Ap,xp)} of A.
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(iv) If c E (a,b) and f: A —> R belongs to 3ê»([a,c\) and 3ê»([c,b\), then f

belongs also to 3?»([a,b\).

(v) If f : A —> R belongs to 3?»([a,c\) for each c E (a,b), and a finite limit

limc_*¿,_ f f = I exists, then f E 3?»([a,b]) and f f = I.

PROOF. The proofs of properties (i)-(v) are the same as those of the corre-

sponding properties of the Henstock-Kurzweil integral (cf. [Ml, §§2.1, 2.3, S3.7,

2.4, and S2.8]). We only need to observe two facts:

(1) A function which is equal almost everywhere to a nearly upper semicontinuous

function is itself nearly upper semicontinuous.

(2) The distance function from a subset of R is continuous.

For illustration, we sketch a fairly complicated proof of property (v), following

the pattern of [Pi, Theorem A7].

Choose an e > 0, and find a 7 E (a, b) so that |/£/ —1\ < e/3 for each c E [7, b),

and \f(b)\(b — ~f) < e/3. Select a strictly increasing sequence {cn}£L0 in [a,b) with

Co = a and limcn = 6. By (iii), for each n = 1,2,..., there is a nearly upper

semicontinuous ¿n: [cn_i,cn] —♦ R+ such that

f(Xi)\Ai\ -If
Ja,i=l

< -2-n

3

whenever {(Ai,xi),..., (Ap,xv)} is a ¿„-fine subpartition of [c„_i,c„]. In view of

observations (1) and (2), we may assume that

8n(x) < min(|x-c„_i|,|x -C„|)

for each x E (cn-i,cn), ¿i(co) < ci — en, and

¿>n(cn) = ¿n+i(c„) < min(c„ -C„_i,C„ + i - c„), n = 1, 2,-

Clearly, the function 8 on A defined by

r, -,      ( 6n(x)     if xE [cn_i,cn], n= 1,2,...,

(0 — 7     11 x = b,

is positive and nearly upper semicontinuous. We show that it belongs to A(/, A; e).

Let P = {(Ai,xi),... ,(Ap,xp)} be a ¿-fine partition of A. After a suitable

reordering, we may assume that A¿ = [í¿_i,í¿], i = l,...,p, where a = t0 <

•■■ < tp — b. Replacing (At,Xi) in P by {([í¿_i,x¿],x¿), ([x¿,í¿],x¿)}, whenever

x¿ E (ti-i,ti), we obtain a ¿-fine partition Q of A with o(f,Q) = o(f,P). Thus

with no loss of generality we may also assume that x¿ = £¿_i or xt = ti for each

i = 1,... ,p. From this and the choice of ¿, we make the following conclusion: if

Pn = {(Ai,xt) EP: Atc [cn_i,c„]}

for n = 1,2,..., and if A is the first positive integer with c^ > ip-1, then conditions

(a)-(c) below are satisfied.

(a) Pn is a ¿„-fine partition of [c„_i, c„] for n = 1,..., A - 1.

(b) Pn is a ¿jv-fine partition of [cjv-i,£P-i]; in particular, Pn is a ¿jy-fine sub-

partition of [cn-i,Cn]-
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iTV
(c)/,= (Un=l^n)U{([ip_i,6],6)}.

Now we have

\a(f,P)-I\<\a(f,P)-  i'*'* fl + lf'1 f-I   <¿2  a{f,Pn)- i'"   f
Ja \J a n=1 Jcn-i

+

rtp-i

°U,Pn)-\        f
JCft-l

N

+ \f(b)\(b-tp-i) + -<-J22-n+2--<£,
n = l

and the proof is completed.

8. LEMMA. Let f be a function on an interval A, and let {Bn : n = 1,2,... }

be a disjoint family of subintervals of A such that f E 3¡» (Bn) for n = 1,2,..., and

f E 3f(A — U„>i Bn)- Further let Wn = sup | fc f\ where the supremum is taken

over all intervals C C Bn, and suppose that J2n>i Wn < +oo. Then f E 3?»(A).

PROOF. Let S = A-\Jn>! Bn and I = (L) ¡s / + E„>i /B„ /• Since | ¡^ f\ <
Wn, we see that I is a well-defined real number. Choose an £ > 0, and find an integer

A > 1 with Zn>N wn < e/6. Let G = (Jn>N int(¿?„), T = A-(G\J U"=i Bn),

and let <p, ip, and h be, respectively, the functions / f IJ„=i Bn, f \ T, and / [ G

extended to A by zero. Thus / = tp + ip + h, and it follows from Proposition 4

and Lemma 7 (iv) that <p E 3?»(A) and f. <p = J2n=i Ib f- Since T differs from

S only by a countable set, Proposition 4 implies that ip E 3l»(A), and we have

fA ip — (L) Js f. Hence by Lemma 7, (i), the function g = (p+tf> belongs to 3?»(A).
Consequently, we can find a nearly upper semicontinuous function 8g : A —* R+ so

that
N

<r(g,P) (£)
Js       _, Jb,

I <

for each ¿9-fine partition P of A.   By Lemma 7, (iii), there is a nearly upper

semicontinuous function ¿„ : Bn —» (0,1] such that

E
i=l

f{zi)\Ei\- f f
Jeí

<¥■

for each ¿„-fine subpartition {(¿?i,zi), ■ ■ ■, (Eq,zq)} of Bn, n = 1,2,-  In view

of observation (2) in the proof of Lemma 7, we may assume that (x — 8n(x),

x + 8n(x)) C Bn whenever x E int(B„). We define a nearly upper semicontinu-

ous function 8h : A —► (0,1] by setting

àh(x. _{«.,
x)     if x € Bn and n > N,

otherwise,

and we show that 8 = min(¿g,¿/l) belongs to A(f,A;s).

To this end, let P = {(Ai,xi),..., (Ap,xp)} be a ¿-fine partition of A. For n =

1,2,..., denote by Kn the set of all the integers k with 1 < k < p and Xk E int(¿?„),

and set Pn = {(Ak,Xk) E P: k E Kn} and C„ = cl(ß„ - \JkeK Ak). Then each
Cn is a union of at most two intervals, and by our choice of ¿/,, for each n > N, the

collection Pn is a ¿„-fine subpartition of Bn; in particular, Bn = Cn U Ufce/c  ^k-
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As h = / on G and h = 0 on A — G, we have

W(f,P)-i\< <r(g,P)~ (¿)//+e/b/1 -t^,p)-e/b/

<  77 + E E/(^i-EÎE / /+/
n>N k£Kn n>N lk<EKnJAl' JCn

<

<

n>N k€Kn

f(xk)\Ak\ I 'VEl/
3 + 3

n>N
E

n>N

+ 2  >      W„<£,

and the lemma is proved.

9. THEOREM.  If A is an interval, then 3¿»(A) =3ê(A).

PROOF. In view of Theorem 2, it suffices to show that 3(A) C 3l»(A). How-

ever, by means of Proposition 4 and Lemmas 7 and 8, this follows readily from the

constructive definition of the Denjoy-Perron integral (see [S, Chapter VIII, §5] or

[N, Chapter XVI, §§6 and 7]).
10. REMARK. The proof of Theorem 9 does not generalize to higher dimen-

sions (cf. Remark 6). Indeed, the proof is based on the possibility of obtaining the

Henstock-Kurzweil integral by the Denjoy transfmite process, for which no satisfac-

tory analogue in higher dimensions is known. Thus it is an open question whether

Theorem 9 holds for the higher dimensional Henstock-Kurzweil integral (see [Ml]),

or for its generalizations defined in [M, JKS, and P3].

REFERENCES

[AP] S. I. Ahmed and W. F. Pfeffer, A Riemann integral in a locally compact Hausdorff space, 3.

Austral. Math. Soc. Ser. A 41 (1986), 115-137.
[FM] J. Foran and S. Meinershagen, Some answers to a question of P. Bullen, Real Anal. Exchange

13 (1987-88), 256-277.
[H]    R. Henstock, Theory of integration, Butterworths, London, 1963.

[JKS] J. Jarnik, J. Kurzweil and S. Schwabik, On Mawhin's approach to multiple nonabsolutely

convergent integral, Casopis Pëst. Mat. 108 (1983), 356-380.

[K]    J. Kurzweil, Nichtabsolut konvergente Integrale, Teubner Verlag, Leipzig, 1980.

[M] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable

vector fields, Czechoslovak Math. J. 31 (1981), 614-632.
[Ml] R. M. McLeod, The generalized Riemann integral, Carus Math. Monos., 20, MAA, Washington,

D.C., 1980.
[Ms] E. J. McShane, A unified theory of integration, Amer. Math. Monthly 80 (1973), 349-359.

[N]    I. P. Natanson, Theory of functions of a real variable, vol. II, Ungar, New York, 1967.

[Pi] W. F. Pfeffer, The Riemann-Stieltjes approach to integration, TWISK 187, NRIMS:CSIR, Pre-

toria, 1980.

[Pa] _, The generalized Riemann integral in higher dimensions, Measure Theory and its Appli-

cations, Lecture Notes in Math., vol. 1033, Springer-Verlag, New York, 1983, pp. 269-275.

[P3] _, The divergence theorem, Trans. Amer. Math. Soc. 95 (1986), 665-685.

[Q]    Queries, Real Anal. Exchange 12 (1986-87), 393.

[S]     S. Saks, Theory of the integral, Dover, New York, 1964.

Department of Mathematics, University of California, Davis, California
95616

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


