A note on extreme points of subordination classes
HTML articles powered by AMS MathViewer
- by D. J. Hallenbeck
- Proc. Amer. Math. Soc. 103 (1988), 1167-1170
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955001-6
- PDF | Request permission
Abstract:
Let $s(F)$ denote the set of functions subordinate to a univalent function $F$ in $\Delta$ in the unit disc. Let $B$ denote the set of functions $\phi (z)$ analytic in $\Delta$ satisfying $|{\phi (x)}| < 1$ and $\phi (0) = 0$. Let $D = F(\Delta )$ and $\lambda (w,\partial D)$ denote the distance between $w$ and $\partial D$ (boundary of $D$). We prove that if $\phi$ is an extreme point of $B$ then $\int _0^{2\pi } {\log \lambda (F(\phi ({e^{it}})),\partial D)dt = - \infty }$. As a corollary we prove that if $F \circ \phi$ is an extreme point of $s(F)$ then $\int _0^{2\pi } {\log \lambda (F(\phi ({e^{it}})),\partial D)dt = - \infty }$.References
- Yusuf Abu-Muhanna, On extreme points of subordination families, Proc. Amer. Math. Soc. 87 (1983), no. 3, 439–443. MR 684634, DOI 10.1090/S0002-9939-1983-0684634-5
- Yusuf Abu-Muhanna and D. J. Hallenbeck, Subordination families and extreme points, Trans. Amer. Math. Soc. 308 (1988), no. 1, 83–89. MR 946431, DOI 10.1090/S0002-9947-1988-0946431-1
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- D. J. Hallenbeck and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Monographs and Studies in Mathematics, vol. 22, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 768747
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- John V. Ryff, Subordinate $H^{p}$ functions, Duke Math. J. 33 (1966), 347–354. MR 192062
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1167-1170
- MSC: Primary 30C45; Secondary 30C80
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955001-6
- MathSciNet review: 955001