An extension theorem for normal functions
HTML articles powered by AMS MathViewer
- by Pentti Järvi
- Proc. Amer. Math. Soc. 103 (1988), 1171-1174
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955002-8
- PDF | Request permission
Abstract:
Given a domain $\Omega \subset {{\mathbf {C}}^n}$, an analytic subvariety $V$ of $\Omega$ and a normal function $f:\Omega \backslash V \to \widehat {\mathbf {C}}$, we show that $f$ can be extended to a holomorphic mapping ${f^*}:\Omega \to \widehat {\mathbf {C}}$ provided the singularities of $V$ are normal crossings.References
- Joseph A. Cima and Steven G. Krantz, The Lindelöf principle and normal functions of several complex variables, Duke Math. J. 50 (1983), no. 1, 303–328. MR 700143, DOI 10.1215/S0012-7094-83-05014-7
- Peter Kiernan, Extensions of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972), 347–355. MR 318519, DOI 10.1090/S0002-9947-1972-0318519-8
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Myung H. Kwack, Generalization of the big Picard theorem, Ann. of Math. (2) 90 (1969), 9–22. MR 243121, DOI 10.2307/1970678
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- Wolfgang Rothstein and Klaus Kopfermann, Funktionentheorie meherer komplexer Veränderlicher, Bibliographisches Institut, Mannheim, 1982 (German). MR 682586
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1171-1174
- MSC: Primary 32H25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955002-8
- MathSciNet review: 955002