A rigidity theorem for quaternionic-Kähler manifolds
HTML articles powered by AMS MathViewer
- by Claude LeBrun
- Proc. Amer. Math. Soc. 103 (1988), 1205-1208
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955010-7
- PDF | Request permission
Abstract:
Let $(M,g)$ be a compact quaternionic-Kähler manifold of dimension $\geq 8$ and positive scalar curvature. It is shown that $(M,g)$ has no nontrivial deformations through quaternionic Kähler manifolds.References
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Kunihiko Kodaira, Complex manifolds and deformation of complex structures, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 283, Springer-Verlag, New York, 1986. Translated from the Japanese by Kazuo Akao; With an appendix by Daisuke Fujiwara. MR 815922, DOI 10.1007/978-1-4613-8590-5
- Simon Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), no. 1, 143–171. MR 664330, DOI 10.1007/BF01393378
- S. M. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 31–55. MR 860810, DOI 10.24033/asens.1503
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1205-1208
- MSC: Primary 53C25; Secondary 32L25, 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955010-7
- MathSciNet review: 955010