Occupation time and the Lebesgue measure of the range for a Lévy process
HTML articles powered by AMS MathViewer
- by S. C. Port
- Proc. Amer. Math. Soc. 103 (1988), 1241-1248
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955017-X
- PDF | Request permission
Abstract:
We consider a Levy process on the line that is transient and with nonpolar one point sets. For $a > 0$ let $N(a)$ be the total occupation time of $[0,a]$ and $R(a)$ the Lebesgue measure of the range of the process intersected with $[0,a]$. Whenever $[0,\infty ]$ is a recurrent set we show $N(a)/EN(a) - R(a)/ER(a)$ converges in the mean square to 0 as $a \to \infty$. This in turn is used to derive limit laws for $R(a)/ER(a)$ from those for $N(a)/EN(a)$.References
- Jean Bretagnolle, Résultats de Kesten sur les processus à accroissements indépendants, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 21–36 (French). MR 0368175 K. Ito and J. P. McKean, Jr., Diffusion processes and their sample paths, Springer, 1965.
- Sidney C. Port and Charles J. Stone, Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 2, 157–275; ibid. 21 (1971), no. 4, 179–265 (English, with French summary). MR 346919, DOI 10.5802/aif.376
- Sidney C. Port, Stable processes with drift on the line, Trans. Amer. Math. Soc. 313 (1989), no. 2, 805–841. MR 997680, DOI 10.1090/S0002-9947-1989-0997680-9
- William E. Pruitt and S. James Taylor, The behaviour of asymmetric Cauchy processes for large time, Ann. Probab. 11 (1983), no. 2, 302–327. MR 690130
- William E. Pruitt and S. James Taylor, Some sample path properties of the asymmetric Cauchy processes, Probability (Proc. Sympos. Pure Math., Vol. XXXI, Univ. Illinois, Urbana, Ill., 1976) Amer. Math. Soc., Providence, R.I., 1977, pp. 111–123. MR 0443102
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1241-1248
- MSC: Primary 60J30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955017-X
- MathSciNet review: 955017