Congruence and one-dimensionality of metric spaces
HTML articles powered by AMS MathViewer
- by Ludvik Janos
- Proc. Amer. Math. Soc. 103 (1988), 1268-1270
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955020-X
- PDF | Request permission
Abstract:
Two subsets $A$ and $B$ of a metric space $(X,d)$ are said to be congruent if there is a bijection between them which preserves the distance $d$. We show that if a separable locally compact metric space is such that no distinct subsets of cardinality 3 are congruent then its dimension is $\leq 1$. We also show that the real line $\mathbb {R}$ can be given a compatible metric with this property.References
- Leonard M. Blumenthal, Theory and applications of distance geometry, Oxford, at the Clarendon Press, 1953. MR 0054981
- Ludvík Janoš, A metric characterization of zero-dimensional spaces, Proc. Amer. Math. Soc. 31 (1972), 268–270. MR 288739, DOI 10.1090/S0002-9939-1972-0288739-5
- Ludvik Janos, Rigid subsets in Euclidean and Hilbert spaces, J. Austral. Math. Soc. 20 (1975), no. 1, 66–72. MR 0428294
- Ludvik Janos and Harold Martin, Metric characterizations of dimension for separable metric spaces, Proc. Amer. Math. Soc. 70 (1978), no. 2, 209–212. MR 474229, DOI 10.1090/S0002-9939-1978-0474229-9 J. Nagata, Modern dimension theory, rev. ed., Heldermann-Verlag, Berlin.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1268-1270
- MSC: Primary 54F45; Secondary 54E35, 54E40, 54F50
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955020-X
- MathSciNet review: 955020