A characterization of Lašnev spaces
HTML articles powered by AMS MathViewer
- by H. H. Hung
- Proc. Amer. Math. Soc. 103 (1988), 1278-1280
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955022-3
- PDF | Request permission
Abstract:
We give here a characterization of closed images of metrizable spaces in terms of the primitive concept of an ever finer sequence of partitions and a requirement considerably weaker than that of a $k$-network.References
- L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc. 95 (1985), no. 3, 487–490. MR 806093, DOI 10.1090/S0002-9939-1985-0806093-3 N. Lašnev, Closed images of metric spaces, Soviet Math. Dokl. 7 (1966), 1219-1221.
- E. Michael, $\aleph _{0}$-spaces, J. Math. Mech. 15 (1966), 983–1002. MR 0206907
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- Jun-iti Nagata, A new characterization of Lasnev spaces, Questions Answers Gen. Topology 3 (1985), no. 1, 70–75. MR 798588
- Jun-iti Nagata, Characterizations of metrizable and Lašnev spaces in terms of $g$-function, Questions Answers Gen. Topology 4 (1986/87), no. 2, 129–139. MR 917894
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1278-1280
- MSC: Primary 54C10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955022-3
- MathSciNet review: 955022