Non-$G$-equivalent Moore $G$-spaces of the same type
HTML articles powered by AMS MathViewer
- by Ryszard Doman
- Proc. Amer. Math. Soc. 103 (1988), 1317-1321
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955029-6
- PDF | Request permission
Abstract:
Let $G$ be a finite group. By a Moore $G$-space we mean a $G$-space $X$ such that for each subgroup $H$ of $G$ the fixed point space ${X^H}$ is a Moore space of type $({M_H},n)$, where $n > 1$ is a fixed integer and ${M_H}$ are abelian groups. In this paper it is shown that there exist infinitely many non-$G$-homotopy equivalent Moore $G$-spaces of certain given type.References
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062, DOI 10.1007/BFb0082690
- Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, Birkhäuser, Boston, Mass., 1981. MR 641551
- Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- Peter J. Kahn, Rational Moore $G$-spaces, Trans. Amer. Math. Soc. 298 (1986), no. 1, 245–271. MR 857443, DOI 10.1090/S0002-9947-1986-0857443-9
- Georgia V. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), no. 2, 509–532. MR 675066, DOI 10.1090/S0002-9947-1982-0675066-8
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 1317-1321
- MSC: Primary 55N25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0955029-6
- MathSciNet review: 955029