The integrability of generalized Garrett-Stanojević sums
HTML articles powered by AMS MathViewer
- by Niranjan Singh and K. M. Sharma
- Proc. Amer. Math. Soc. 104 (1988), 135-144
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929424-5
- PDF | Request permission
Abstract:
In this paper we have defined the generalized Garrett-Stanojević cosine sums \[ {h_n}\left ( x \right ) = \sum \limits _{p = 0}^n {S_p^{r - 1}{\Delta ^r}{a_p}} \] and have proved that under suitable conditions ${h_n} \to h$ in the ${L^1}$-norm, where $h\left ( x \right ) = {a_0}/2 + \sum \nolimits _{n = 1}^\infty {{a_n}\cos nx}$. If $r = 1$, then ${h_n}\left ( x \right )$ reduces to the modified cosine sums introduced by Rees and Stanojević.References
- A. N. Kolmogorov, Sur l’ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923), 83-86.
C. N. Moore, On the use of Cesàro means in determining criteria for Fourier constants, Presented to the Society and Section A of the American Association for the Advancement of Science, by invitation, June 21, 1933, on the occasion of an address by Professor L. Fejér.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
- L. S. Bosanquet, Note on convergence and summability factors. III, Proc. London Math. Soc. (2) 50 (1949), 482–496. MR 27872, DOI 10.1112/plms/s2-50.7.482
- A. F. Andersen, On the extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind, Proc. London Math. Soc. (3) 8 (1958), 1–52. MR 92880, DOI 10.1112/plms/s3-8.1.1
- Charles S. Rees and Caslav V. Stanojevic, Necessary and sufficient conditions for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579–586. MR 322432, DOI 10.1016/0022-247X(73)90278-3 J. W. Garrett and Č. V. Stanojević, On integrability and ${L^1}$-convergence of certain cosine sums, Notices Amer. Math. Soc. 22 (1975), A-166.
- John W. Garrett and Časlav V. Stanojević, Necessary and sufficient conditions for $L^{1}$ convergence of trigonometric series, Proc. Amer. Math. Soc. 60 (1976), 68–71 (1977). MR 425480, DOI 10.1090/S0002-9939-1976-0425480-3
- Niranjan Singh and K. M. Sharma, $L^1$-convergence of modified cosine sums with generalized quasiconvex coefficients, J. Math. Anal. Appl. 136 (1988), no. 1, 189–200. MR 972593, DOI 10.1016/0022-247X(88)90125-4
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 135-144
- MSC: Primary 42A20; Secondary 42A24
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929424-5
- MathSciNet review: 929424