Weights of semi-invariants of the quotient division ring of an enveloping algebra
HTML articles powered by AMS MathViewer
- by E. Nauwelaerts and A. I. Ooms
- Proc. Amer. Math. Soc. 104 (1988), 13-19
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958034-9
- PDF | Request permission
Abstract:
Let $L$ be a finite dimensional Lie algebra over a field $k$ of characteristic zero, $D(L)$ the quotient division ring of $U(L)$. It is shown that the weights of the semi-invariants of $D(L)$ form a finitely generated, free abelian group ${\Lambda _D}(L)$. It follows, among other things, that the semicenter of $D(L)$ is isomorphic to the group algebra of ${\Lambda _D}(L)$ over the center $Z(D(L))$ of $D(L)$.References
- David F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), no. 1, 79–106. MR 514866, DOI 10.1080/00927877908822334
- Walter Borho, Peter Gabriel, and Rudolf Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume), Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin-New York, 1973 (German). MR 0376790
- Nicolas Bourbaki, Elements of mathematics. Algebra, Part I: Chapters 1-3, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1974. Translated from the French. MR 0354207 C. Chevalley, Théorie des groupes de Lie, vol. III, Hermann, Paris, 1968.
- Paul Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR 0530404
- L. Delvaux, E. Nauwelaerts, and A. I. Ooms, On the semicenter of a universal enveloping algebra, J. Algebra 94 (1985), no. 2, 324–346. MR 792958, DOI 10.1016/0021-8693(85)90187-5
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- J. Dixmier, M. Duflo, and M. Vergne, Sur la représentation coadjointe d’une algèbre de Lie, Compositio Math. 29 (1974), 309–323 (French). MR 364375
- Robert Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984. MR 741678
- Lieven Le Bruyn and Alfons I. Ooms, The semicenter of an enveloping algebra is factorial, Proc. Amer. Math. Soc. 93 (1985), no. 3, 397–400. MR 773989, DOI 10.1090/S0002-9939-1985-0773989-0
- Marie-Paule Malliavin, Ultra-produits d’algèbres de Lie, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 34th Year (Paris, 1981) Lecture Notes in Math., vol. 924, Springer, Berlin-New York, 1982, pp. 157–166 (French). MR 662257
- J. C. McConnell, Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture, Proc. London Math. Soc. (3) 29 (1974), 453–484. MR 357529, DOI 10.1112/plms/s3-29.3.453
- Colette Moeglin, Factorialité dans les algèbres enveloppantes, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 22, Ai, A1269–A1272 (French, with English summary). MR 419544 —, Idéaux bilatères des algèbres enveloppantes, Bull. Soc. Math. France 108 (1980), 143-186.
- T. Moons, E. Nauwelaerts, and A. I. Ooms, On the weight spaces of Lie algebra modules and their Jordan kernel, J. Algebra 107 (1987), no. 1, 28–42. MR 883866, DOI 10.1016/0021-8693(87)90070-6
- T. Moons and A. I. Ooms, On the Jordan kernel of a universal enveloping algebra, J. Algebra 122 (1989), no. 1, 211–231. MR 994944, DOI 10.1016/0021-8693(89)90246-9
- C. Năstăsescu and F. Van Oystaeyen, Graded rings with finiteness conditions. II, Comm. Algebra 13 (1985), no. 3, 605–618. MR 773752, DOI 10.1080/00927878508823179
- Rudolf Rentschler and Michèle Vergne, Sur le semi-centre du corps enveloppant d’une algèbre de Lie, Ann. Sci. École Norm. Sup. (4) 6 (1973), 389–405 (French). MR 360730
- Richard Resco, Lance W. Small, and Adrian R. Wadsworth, Tensor products of division rings and finite generation of subfields, Proc. Amer. Math. Soc. 77 (1979), no. 1, 7–10. MR 539619, DOI 10.1090/S0002-9939-1979-0539619-5
- L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra 8 (1968), 295–313. MR 224745, DOI 10.1016/0021-8693(68)90061-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 13-19
- MSC: Primary 17B35; Secondary 16A33, 16A39
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958034-9
- MathSciNet review: 958034