Order relation in quadratic Jordan rings and a structure theorem
HTML articles powered by AMS MathViewer
- by Santos González and Consuelo Martínez
- Proc. Amer. Math. Soc. 104 (1988), 51-54
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958042-8
- PDF | Request permission
Abstract:
It is shown that the relation defined by $x \leq y$ if and only if ${V_x}x = {V_x}y$ and ${U_x}x = {U_x}y = {U_y}x$ is an order relation for quadratic Jordan algebras without nilpotent elements, which extends our previous one for linear Jordan algebras, and reduces to the usual Abian order for associative algebras. We prove that a quadratic Jordan algebra is isomorphic to a direct product of division algebras if and only if the algebra has no nilpotent elements and is hyperatomic and orthogonally complete.References
- Alexander Abian, Direct product decomposition of commutative semi-simple rings, Proc. Amer. Math. Soc. 24 (1970), 502–507. MR 258815, DOI 10.1090/S0002-9939-1970-0258815-X
- Alexander Abian, Order in a special class of rings and a structure theorem, Proc. Amer. Math. Soc. 52 (1975), 45–49. MR 374222, DOI 10.1090/S0002-9939-1975-0374222-8
- Alexander Abian, Addendum to “Order in a special class of rings and a structure theorem” (Proc. Amer. Math. Soc. 52 (1975), 45–49), Proc. Amer. Math. Soc. 61 (1976), no. 1, 188 (1977). MR 419548, DOI 10.1090/S0002-9939-1976-0419548-5
- M. Chacron, Direct product of division rings and a paper of Abian, Proc. Amer. Math. Soc. 29 (1971), 259–262. MR 274512, DOI 10.1090/S0002-9939-1971-0274512-X
- Santos González and Consuelo Martínez, Order relation in Jordan rings and a structure theorem, Proc. Amer. Math. Soc. 98 (1986), no. 3, 379–388. MR 857926, DOI 10.1090/S0002-9939-1986-0857926-7
- S. González and C. Martínez, Order relation in JB-algebras, Comm. Algebra 15 (1987), no. 9, 1869–1876. MR 898297, DOI 10.1080/00927878708823509
- N. Jacobson, Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45, Tata Institute of Fundamental Research, Bombay, 1969. MR 0325715 —, Structure theory of Jordan algebras, Lecture Notes in Math., University of Arkansas, 1971.
- Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR 0444721, DOI 10.1007/BFb0080843
- Kevin McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072–1079. MR 202783, DOI 10.1073/pnas.56.4.1072
- Hyo Chul Myung and Luis R. Jimenez, Direct product decomposition of alternative rings, Proc. Amer. Math. Soc. 47 (1975), 53–60. MR 354796, DOI 10.1090/S0002-9939-1975-0354796-3
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 51-54
- MSC: Primary 17C10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958042-8
- MathSciNet review: 958042