Kida’s theorem for a class of nonnormal extensions
HTML articles powered by AMS MathViewer
- by Robert Gold and Manohar Madan
- Proc. Amer. Math. Soc. 104 (1988), 55-60
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958043-X
- PDF | Request permission
Abstract:
Let $E,F$ be ${{\mathbf {Z}}_p}$-fields of CM-type such that $E/F$ is an extension of degree $p$. Let $L$, the normal closure of $E/F$, be such that $\operatorname {Gal} (L/F)$ has a normal subgroup of order $p$. Denote the fixed field of this group by $K$. We prove a Kida type formula which describes the minus part of the Iwasawa lambda invariant of $E$ in terms of the lambda invariants of $F$ and $K$.References
- Joseph G. D’Mello and Manohar L. Madan, Class group rank relations in $\textbf {Z}_{\ell }$-extensions, Manuscripta Math. 41 (1983), no. 1-3, 75–107. MR 689133, DOI 10.1007/BF01165930
- Robert Gold and Manohar Madan, Galois representations of Iwasawa modules, Acta Arith. 46 (1986), no. 3, 243–255. MR 864260, DOI 10.4064/aa-46-3-243-255
- Kenkichi Iwasawa, On the $\mu$-invariants of $Z_{\ell }$-extensions, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 1–11. MR 0357371
- Yûji Kida, $l$-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), no. 4, 519–528. MR 599821, DOI 10.1016/0022-314X(80)90042-6
- Hans-Georg Rück, Hasse-Witt-invariants and dihedral extensions, Math. Z. 191 (1986), no. 4, 513–517. MR 832808, DOI 10.1007/BF01162340 I. R. Safarevic, On $p$-extensions, Amer. Math. Soc. Transl. (2) 4 (1954).
- Warren M. Sinnott, On $p$-adic $L$-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), no. 1, 3–17. MR 762305
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 55-60
- MSC: Primary 11R23
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958043-X
- MathSciNet review: 958043