The Hodge group of an abelian variety
HTML articles powered by AMS MathViewer
- by V. Kumar Murty
- Proc. Amer. Math. Soc. 104 (1988), 61-68
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958044-1
- PDF | Request permission
Abstract:
Let $A$ be a simple abelian variety of odd dimension, defined over ${\mathbf {C}}$. If the Hodge classes on $A$ are intersections of divisors, then the semisimple part of the Hodge group of $A$ is as large as it is allowed to be by endomorphisms and polarizations.References
- B. Dodson, On the Mumford-Tate group of an abelian variety with complex multiplication, J. Algebra 111 (1987), no. 1, 49–73. MR 913197, DOI 10.1016/0021-8693(87)90242-0
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- David Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 347–351. MR 0206003 —, Abelian varieties, Tata Institute Lecture Notes, Oxford, 1974.
- V. Kumar Murty, Algebraic cycles on abelian varieties, Duke Math. J. 50 (1983), no. 2, 487–504. MR 705036, DOI 10.1215/S0012-7094-83-05021-4
- V. Kumar Murty, Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984), no. 2, 197–206. MR 744607, DOI 10.1007/BF01456085
- Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804. MR 457455, DOI 10.2307/2373815
- Kenneth A. Ribet, Hodge classes on certain types of abelian varieties, Amer. J. Math. 105 (1983), no. 2, 523–538. MR 701568, DOI 10.2307/2374267
- Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43–62. MR 594532, DOI 10.1007/BF01457819
- Jean-Pierre Serre, Groupes algébriques associés aux modules de Hodge-Tate, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 155–188 (French). MR 563476
- S. G. Tankeev, Algebraic cycles on surfaces and abelian varieties, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 2, 398–434, 463–464 (Russian). MR 616226 Liem Mai, Lower bounds for the rank of a CM type, M.Sc. thesis, Concordia University, 1987.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 61-68
- MSC: Primary 14K20; Secondary 11G10, 11G15, 14C30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958044-1
- MathSciNet review: 958044