A factorization theorem for unfoldings of analytic functions
HTML articles powered by AMS MathViewer
- by Tatsuo Suwa
- Proc. Amer. Math. Soc. 104 (1988), 131-134
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958056-8
- PDF | Request permission
Abstract:
Let $\tilde f$ and $g$ be holomorphic function germs at 0 in ${{\mathbf {C}}^n} \times {{\mathbf {C}}^n} = \left \{ {\left ( {x,s} \right )} \right \}$. If ${d_x}g\Lambda {d_x}\tilde f = 0$ and if $f\left ( x \right ) = \tilde f\left ( {x,0} \right )$ is not a power or a unit, then there exists a germ $\lambda$ at 0 in ${{\mathbf {C}}^n} \times {{\mathbf {C}}^n}$ such that $g\left ( {x,s} \right ) = \lambda \left ( {\tilde f\left ( {x,s} \right ),s} \right )$. The result has the implication that the notion of an RL-morphism in the unfolding theory of foliation germs generalizes that of a right-left morphism in the function germ case.References
- J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 469–523 (French). MR 608290
- Robert Moussu, Sur l’existence d’intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, xi, 171–220 (French, with English summary). MR 415657
- Robert Moussu and Jean-Claude Tougeron, Fonctions composées analytiques et différentiables, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 21, Aii, A1237–A1240. MR 409876
- Tatsuo Suwa, A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math. 65 (1981/82), no. 1, 29–48. MR 636878, DOI 10.1007/BF01389293
- Tatsuo Suwa, Determinacy of analytic foliation germs, Foliations (Tokyo, 1983) Adv. Stud. Pure Math., vol. 5, North-Holland, Amsterdam, 1985, pp. 427–460. MR 877343, DOI 10.2969/aspm/00510427
- Tatsuo Suwa, The versality theorem for $RL$-morphisms of foliation unfoldings, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 599–631. MR 894309, DOI 10.2969/aspm/00810599
- Gordon Wassermann, Stability of unfoldings, Lecture Notes in Mathematics, Vol. 393, Springer-Verlag, Berlin-New York, 1974. MR 0410789
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 131-134
- MSC: Primary 58H15; Secondary 32G07
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958056-8
- MathSciNet review: 958056