Complex retractions and envelopes of holomorphy
HTML articles powered by AMS MathViewer
- by S. Trapani
- Proc. Amer. Math. Soc. 104 (1988), 145-148
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958057-X
- PDF | Request permission
Abstract:
In this paper we show that if a domain $\Omega$ of a Stein manifold $X$ is a "holomorphic deformation retract" of a domain of holomorphy $D \subseteq X$, then $\Omega$ has a univalent envelope of holomorphy ${\Omega ^*} \subseteq X$.References
- B. Almer, Sur quelques problèmes de la théorie..., Arkiv für Mat. Astronomy och Fysik B.d. 17 (7) (1922).
- Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863
- Robert Carmignani, Envelopes of holomorphy and holomorphic convexity, Trans. Amer. Math. Soc. 179 (1973), 415–431. MR 316748, DOI 10.1090/S0002-9947-1973-0316748-1 S. Coen, Una introduzione ai domini di Riemann non ramificati $n$ dimensionali, Pitagora Ed., Bologna, 1980.
- John Eric Fornæss and William R. Zame, Riemann domains and envelopes of holomorphy, Duke Math. J. 50 (1983), no. 1, 273–283. MR 700141
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 145-148
- MSC: Primary 32D10; Secondary 32E15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958057-X
- MathSciNet review: 958057