Mazur’s intersection property and a Kreĭn-Mil′man type theorem for almost all closed, convex and bounded subsets of a Banach space
HTML articles powered by AMS MathViewer
- by Pando Grigorov Georgiev
- Proc. Amer. Math. Soc. 104 (1988), 157-164
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958059-3
- PDF | Request permission
Abstract:
Let $\mathcal {V}$ (resp. ${\mathcal {V}^*}$) be the set of all closed, convex and bounded (resp. ${w^*}$-compact and convex) subsets of a Banach space $E$ (resp. of its dual ${E^*}$) furnished with the Hausdorff metric. It is shown that if there exists an equivalent norm $|| \cdot ||$ in $E$ with dual $|| \cdot |{|^*}$ such that $\left ( {E,|| \cdot ||} \right )$ has Mazur’s intersection property and $\left ( {{E^*},||\cdot |{|^*}} \right )$ has ${w^*}$-Mazur’s intersection property, then (1) there exists a dense ${G_\delta }$ subset ${\mathcal {V}_0}$ of $\mathcal {V}$ such that for every $X \in {\mathcal {V}_0}$ the strongly exposing functionals form a dense ${G_\delta }$ subset of ${E^*}$; (2) there exists a dense ${G_\delta }$ subset $\mathcal {V}_0^*$ of ${\mathcal {V}^*}$ such that for every ${X^*} \in \mathcal {V}_0^*$ the ${w^*}$-strongly exposing functionals form a dense ${G_\delta }$ subset of $E$. In particular every $X \in {\mathcal {V}_0}$ is the closed convex hull of its strongly exposed points and every ${X^*} \in \mathcal {V}_0^*$ is the ${w^*}$-closed convex hull of its ${w^*}$-strongly exposed points.References
- Errett Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 27–35. MR 0154092
- Richard D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983. MR 704815, DOI 10.1007/BFb0069321
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094, DOI 10.1007/BFb0082079
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Pando G. Georgiev, Almost all convex, closed and bounded subsets of a Banach space are dentable, Mathematics and mathematical education (Sunny Beach (SlЪnchev Bryag), 1985) BЪlgar. Akad. Nauk, Sofia, 1985, pp. 355–361 (English, with Bulgarian summary). MR 805373
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- J. R. Giles, D. A. Gregory, and Brailey Sims, Characterisation of normed linear spaces with Mazur’s intersection property, Bull. Austral. Math. Soc. 18 (1978), no. 1, 105–123. MR 493266, DOI 10.1017/S0004972700007863
- Gilles Godefroy, Points de Namioka. Espaces normants. Applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), no. 3, 209–220 (French, with English summary). MR 605379, DOI 10.1007/BF02760806
- G. Godefroy, S. Troyanski, J. Whitefield, and V. Zizler, Locally uniformly rotund renorming and injections into $c_0(\Gamma )$, Canad. Math. Bull. 27 (1984), no. 4, 494–500. MR 763053, DOI 10.4153/CMB-1984-079-8
- K. Kuratovskiĭ, Topologiya. Tom I, Izdat. “Mir”, Moscow, 1966 (Russian). Translated from the English by M. Ja. Antonovskiĭ; With a preface by P. S. Aleksandrov. MR 0217750 S. Mazur, Über schwach Konvengenz in den Raumen $\left ( {{L^p}} \right )$), Studia Math. 4 (1933), 128-133.
- R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960), 976–983. MR 123172, DOI 10.1090/S0002-9939-1960-0123172-X
- Francis Sullivan, Dentability, smoothability and stronger properties in Banach spaces, Indiana Univ. Math. J. 26 (1977), no. 3, 545–553. MR 438088, DOI 10.1512/iumj.1977.26.26042
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 157-164
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958059-3
- MathSciNet review: 958059