The Kobayashi and Bergman metrics on generalized Thullen domains
HTML articles powered by AMS MathViewer
- by K. T. Hahn and P. Pflug
- Proc. Amer. Math. Soc. 104 (1988), 207-214
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958068-4
- PDF | Request permission
Abstract:
A comparison theorem of the Kobayashi metric and the Bergman metric is obtained on generalized Thullen domains in ${{\mathbf {C}}^2}$. This theorem is then used to obtain a lower estimate for the Kobayashi metric. It is noted that the lower estimate obtained is best possible.References
- Kazuo Azukawa and Masaaki Suzuki, The Bergman metric on a Thullen domain, Nagoya Math. J. 89 (1983), 1–11. MR 692340
- Kazuo Azukawa, Bergman metric on a domain of Thullen type, Math. Rep. Toyama Univ. 7 (1984), 41–65. MR 761092
- Eric Bedford and John Erik Fornæss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), no. 4, 711–719. MR 518102 S. Bergman, Zur Theorie von pseudokonformen Abbildungen, Mat. Sb. 1 (43) (1936), 79-96.
- David W. Catlin, Invariant metrics on pseudoconvex domains, Several complex variables (Hangzhou, 1981) Birkhäuser Boston, Boston, MA, 1984, pp. 7–12. MR 897577
- K. Diederich, J. E. Fornæss, and G. Herbort, Boundary behavior of the Bergman metric, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 59–67. MR 740872, DOI 10.1090/pspum/041/740872
- Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $C^{n}$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. MR 372252, DOI 10.1090/S0002-9947-1975-0372252-8
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- K. T. Hahn and Peter Pflug, On a minimal complex norm that extends the real Euclidean norm, Monatsh. Math. 105 (1988), no. 2, 107–112. MR 930429, DOI 10.1007/BF01501163
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- N. Kritikos, Über analytische Abbildungen einer Klasse von vierdimensionalen Gebieten, Math. Ann. 99 (1928), no. 1, 321–341 (German). MR 1512453, DOI 10.1007/BF01459100
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- Peter Pflug, Glatte Holomorphiegebiete mit plurisubharmonischer innerer Randfunktion sind Banach-Stein, Ark. Mat. 14 (1976), no. 1, 55–58. MR 427668, DOI 10.1007/BF02385823
- R. Michael Range, The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math. 78 (1978), no. 1, 173–189. MR 513293
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 207-214
- MSC: Primary 32H15; Secondary 32H20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958068-4
- MathSciNet review: 958068