Toeplitz spectral inclusion and generalized in modulus property
HTML articles powered by AMS MathViewer
- by J. Janas
- Proc. Amer. Math. Soc. 104 (1988), 231-234
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958073-8
- PDF | Request permission
Abstract:
Let $A \subset {C_b}(X)$ be a function algebra and let $\mu$ be a Borel measure on $X$ and ${H^2}(\mu ) = \bar A$—the closure in ${L^2}(\mu )$. It turns out that the spectral inclusion theorem for Toeplitz operators, defined in the above context, implies the density of finite sums $\sum \nolimits _i {{{\left | {{u_i}} \right |}^2},{u_i} \in A}$, in (i) the cone of positive functions in ${L^1}(\mu )$, (ii) the cone of positive functions in ${L^p}(\mu ),p \leq 2$, if $\mu (X){\text { < }}\infty$, (iii) the cone of positive functions in $C(X)$, if $X$ is compact.References
- A. B. Aleksandrov, Inner functions on compact spaces, Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 1–13 (Russian). MR 745695
- L. A. Coburn and R. G. Douglas, $C^{\ast }$-algebras of operators on a half-space. I, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 59–67. MR 358417
- J. Janas, Note on the spectral inclusion theorem for Toeplitz operators, Ann. Polon. Math. 35 (1977/78), no. 2, 111–115. MR 482288, DOI 10.4064/ap-35-2-111-115
- J. Janas, Some applications of functions of several complex variables to Toeplitz and subnormal operators, Ann. Polon. Math. 40 (1983), no. 2, 185–192. MR 713843, DOI 10.4064/ap-40-2-185-192
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 231-234
- MSC: Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958073-8
- MathSciNet review: 958073