The derivative of Bazilevič functions
HTML articles powered by AMS MathViewer
- by R. R. London and D. K. Thomas
- Proc. Amer. Math. Soc. 104 (1988), 235-238
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958074-X
- PDF | Request permission
Corrigendum: Proc. Amer. Math. Soc. 109 (1990), 1143.
Abstract:
For $\alpha {\text { > }}0$, let ${B_1}(\alpha )$ be the class of normalised analytic functions $f$ defined in the open unit disc $D$ such that ${\text {Re(}}f(z)/z{{\text {)}}^{\alpha - 1}}f’(z){\text { > }}0$ for $z \in D$. Sharp upper and lower bounds are obtained for $\left | {zf’(z)/f(z)} \right |$ when $f \in {B_1}(\alpha )$.References
- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. MR 1503516, DOI 10.2307/2007212 I. E. Bazilevič, Über einen Fall der Intergrier-barkeit in der Quadratur der Gleichung von Löwner-Kufarev, Math. Sb. 37 (1955), 471-476. R. M. El-Ashwah and D. K. Thomas, On the derivative of some Bazilevič functions (to appear). F. Gray and S. Ruscheweyh, An estimate for functions with positive real part (to appear).
- R. R. London, Functions whose derivative has positive real part, Proc. Amer. Math. Soc. 103 (1988), no. 2, 521–524. MR 943078, DOI 10.1090/S0002-9939-1988-0943078-3
- Stephan Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 83, Presses de l’Université de Montréal, Montreal, Que., 1982. Fundamental Theories of Physics. MR 674296
- Ram Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38 (1973), 261–271. MR 311887, DOI 10.1090/S0002-9939-1973-0311887-9
- D. K. Thomas, On Bazilevič functions, Trans. Amer. Math. Soc. 132 (1968), 353–361. MR 222278, DOI 10.1090/S0002-9947-1968-0222278-6
- D. K. Thomas, On functions whose derivative has positive real part, Proc. Amer. Math. Soc. 98 (1986), no. 1, 68–70. MR 848877, DOI 10.1090/S0002-9939-1986-0848877-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 235-238
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958074-X
- MathSciNet review: 958074