Ideals of multiplier algebras of simple AF $C^ *$-algebras
HTML articles powered by AMS MathViewer
- by Hua Xin Lin
- Proc. Amer. Math. Soc. 104 (1988), 239-244
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958075-1
- PDF | Request permission
Abstract:
It is shown that the ${C^ * }$-algebra $M(A)/A$, where $A$ is a nonunital separable simple AF ${C^ * }$-algebra and $M(A)$ is the multiplier algebra of $A$, is simple if and only if $A$ has a continuous scale or $A$ is elementary. Some results concerning the ideal structure of $M(A)/A$ are also obtained in the case that it is nontrivial.References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271, DOI 10.1007/978-3-642-65009-3
- Bruce E. Blackadar, Traces on simple AF $C^{\ast }$-algebras, J. Functional Analysis 38 (1980), no. 2, 156–168. MR 587906, DOI 10.1016/0022-1236(80)90062-2
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762, DOI 10.1090/cbms/046
- George A. Elliott, Derivations of matroid $C^{\ast }$-algebras. II, Ann. of Math. (2) 100 (1974), 407–422. MR 352999, DOI 10.2307/1971079
- Hua Xin Lin, Fundamental approximate identities and quasi-multipliers of simple $AF\;C^*$-algebras, J. Funct. Anal. 79 (1988), no. 1, 32–43. MR 950082, DOI 10.1016/0022-1236(88)90028-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 239-244
- MSC: Primary 46L05; Secondary 46M10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958075-1
- MathSciNet review: 958075