Optimal partitioning of a measurable space
HTML articles powered by AMS MathViewer
- by Jerzy Legut and Maciej Wilczyński
- Proc. Amer. Math. Soc. 104 (1988), 262-264
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958079-9
- PDF | Request permission
Abstract:
An $\alpha$-optimal partition of a measurable space according to $n$ nonatomic probability measures is defined. A minmax theorem is used to find a method of obtaining the $\alpha$-optimal partition. An application to a problem of fair division is given.References
- Jean-Pierre Aubin, Mathematical methods of game and economic theory, Studies in Mathematics and its Applications, vol. 7, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 556865
- L. E. Dubins and E. H. Spanier, How to cut a cake fairly, Amer. Math. Monthly 68 (1961), 1–17. MR 129031, DOI 10.2307/2311357
- A. Dvoretzky, A. Wald, and J. Wolfowitz, Relations among certain ranges of vector measures, Pacific J. Math. 1 (1951), 59–74. MR 43865
- John Elton, Theodore P. Hill, and Robert P. Kertz, Optimal-partitioning inequalities for nonatomic probability measures, Trans. Amer. Math. Soc. 296 (1986), no. 2, 703–725. MR 846603, DOI 10.1090/S0002-9947-1986-0846603-9 B. Knaster, Sur le probleme du partage pragmatique de H. Steinhaus, Ann. Soc. Polon. Math. 19 (1946), 228-230.
- Jerzy Legut, Inequalities for $\alpha$-optimal partitioning of a measurable space, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1249–1251. MR 969055, DOI 10.1090/S0002-9939-1988-0969055-4
- K. Urbanik, Quelques théorèmes sur les mesures, Fund. Math. 41 (1954), 150–162 (French). MR 63427, DOI 10.4064/fm-41-1-150-162
- Dietrich Weller, Fair division of a measurable space, J. Math. Econom. 14 (1985), no. 1, 5–17. MR 816212, DOI 10.1016/0304-4068(85)90023-0 M. Wilczyński, Optimal partitioning inequalities for nonatomic finite measures, unpublished result.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 262-264
- MSC: Primary 28A12; Secondary 60A99, 90D99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958079-9
- MathSciNet review: 958079