Zonoids with minimal volume-productâa new proof
HTML articles powered by AMS MathViewer
- by Y. Gordon, M. Meyer and S. Reisner
- Proc. Amer. Math. Soc. 104 (1988), 273-276
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958082-9
- PDF | Request permission
Abstract:
A new and simple proof of the following result is given: The product of the volumes of a symmetric zonoid $A$ in ${{\mathbf {R}}^n}$ and of its polar body is minimal if and only if $A$ is the Minkowski sum of $n$ segments.References
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\textbf {R}^n$, Invent. Math. 88 (1987), no. 2, 319â340. MR 880954, DOI 10.1007/BF01388911
- Kurt Leichtweiss, Konvexe Mengen, Hochschultext [University Textbooks], Springer-Verlag, Berlin-New York, 1980 (German). MR 586235, DOI 10.1007/978-3-642-95335-4
- Mathieu Meyer, Une caractĂ©risation volumique de certains espaces normĂ©s de dimension finie, Israel J. Math. 55 (1986), no. 3, 317â326 (French, with English summary). MR 876398, DOI 10.1007/BF02765029 â, Sur le produit volumique de certain Ă©spaces normĂ©s, Sem. dâInitiation Ă lâAnalyse, 25 Ăšme annĂ©e, 1985-1986, no. 4.
- Shlomo Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57 (1985), no. 2, 386â392. MR 832364, DOI 10.7146/math.scand.a-12124
- Shlomo Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339â346. MR 845207, DOI 10.1007/BF01164009
- Shlomo Reisner, Minimal volume-product in Banach spaces with a $1$-unconditional basis, J. London Math. Soc. (2) 36 (1987), no. 1, 126â136. MR 897680, DOI 10.1112/jlms/s2-36.1.126
- J. Saint-Raymond, Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, vol. 46, Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25 (French). MR 670798 L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio de $n$ dimensiones, Portugal. Math. 8 (1949), 155-161.
- Rolf Schneider and Wolfgang Weil, Zonoids and related topics, Convexity and its applications, BirkhĂ€user, Basel, 1983, pp. 296â317. MR 731116
- Albert W. Marshall, Ingram Olkin, and Frank Proschan, Monotonicity of ratios of means and other applications of majorization. , Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) Academic Press, New York, 1967, pp. 177â190. MR 0237727
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 273-276
- MSC: Primary 52A40; Secondary 52A20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0958082-9
- MathSciNet review: 958082