OSCILLATORY SOLUTIONS FOR CERTAIN DELAY-DIFFERENTIAL EQUATIONS
GEORGE SEIFERT
(Communicated by George R. Sell)

ABSTRACT. The existence of oscillatory solutions for a certain class of scalar first order delay-differential equations is proved. An application to a delay logistic equation arising in certain models for population variation of a single species in a constant environment with limited resources for growth is considered.

It is known (cf. [1, 2]) that all solutions of the delay logistic equations

\[N'(t) = N(t)(a - bN(t) - N(t-1)), \quad t > 0, \]

with \(N(t) = N_0(t) > 0, -1 < t < 0, \) \(N_0 \) continuous, and \(a \) and \(b \) positive constants, satisfy \(N(t) \to a/(b+1) \) as \(t \to \infty \) whenever \(b > 1 \). In [3] it was shown that for any \(b > 0 \), there exists \(a(b) > 0 \) and that if \(0 < a < a(b) \), there exist solutions \(N(t) \) of (1) which do not oscillate about the equilibrium \(N = a/(b+1) \); in particular, such that, \(N(t) > a/(b+1) \) for \(t \geq 0 \). It is the purpose of this paper to show that for this same \(a(b) \), if \(a > a(b) \), there exist oscillatory solutions about this equilibrium solution. In case \(b < 1 \), this is known; in fact, a Hopf bifurcation (cf. [1]) shows the existence for certain \(a \) of nonconstant positive periodic solutions. However, if \(b > 1 \), the fact that some solutions of (1) approach \(a/(b+1) \) in an oscillatory fashion seems to be new.

The above mentioned result for (1) will follow from a result for a more general scalar delay-differential equation of the form

\[y'(t) = L(y_t) + N(t, y_t), \quad t > 0. \]

Here \(y_t = y(t+\theta), -1 \leq \theta \leq 0, \) and we assume

\((H_1) \) \(L(\phi) \) is continuous and linear on \(C = C([-1, 0], R) \) and \(N(t, \phi) \) is continuous on \(R \times C \) and satisfies

\[|N(t, \phi)| \leq M(t)||\phi||^2, \quad \phi \in C, \ ||\phi|| \leq B_0, \ t \geq 0; \]

where the norm in \(C \) is defined by \(||\phi|| = \sup\{||\phi(\theta)||: -1 \leq \theta \leq 0\} \), and \(\int_{-\infty}^{\infty} M(t) \, dt < \infty; \)

\((H_2) \) The characteristic equation for

\[y'(t) = L(y_t) \]

has a pair of simple pure imaginary roots \(\pm i\beta, \beta > 0, \) and all other roots have negative real parts.
Remark 1. Under assumption (H2), there exists a nonconstant periodic solution \(y^*(t) \) of (3) and positive numbers \(\rho^* \) and \(B, \rho^* < 1, B < B_0/2 \), such that

\[
\max\{y^*(t) : t \in R\} \geq \rho^*, \quad \min\{y^*(t) : t \in R\} \leq -\rho^*,
\]
\[
|y^*(t)| \leq B, \quad t \in R.
\]

This follows from standard theory for solutions of (3); cf., for example, Hale’s monograph [4].

Definition. The real-valued function \(f(t) \) on \([0, \infty)\) is oscillatory if there exist \(t_n \to \infty \) as \(n \to \infty, t_{n+1} > t_n \), such that \((-1)^n f(t_n) > 0, n = 1, 2, \ldots\).

Remark 2. If \(f(t) \) is continuous and oscillatory in this sense, clearly \(f \) must have an unbounded sequence of zeros and cannot be identically zero on any half infinite interval \([t_0, \infty), t_0 \geq 0\).

Theorem 1. If (H1) and (H2) hold, there exists \(\delta_0 > 0 \) such that for each \(\delta, 0 < \delta < \delta_0 \), (2) has an oscillatory solution \(y = w(t) \) such that \(|w(t)| \leq \delta, t \geq 0 \).

Proof. Let \(u(t) \) be the fundamental solution for (3); i.e., let \(u(t) \) solve (cf. appendix)

\[
u'(t) = L(u(t)), \quad t > 0,
\]
\[
u(0) = 1,
\]
\[
u(t) = 0, \quad -1 < t < 0.
\]

From (H2) it follows that there exists \(K > 0 \) such that \(|u(t)| \leq K, t \geq 0 \); again cf. [4, Chapter 7]. For this \(K \), and \(\rho^* \) and \(B \) as in Remark 1, fix \(\varepsilon > 0 \) such that

\[
\varepsilon \int_0^\infty M(t) dt < \frac{\rho^*}{8B^2 K} < (4BK)^{-1};
\]

note that \(\rho^* \leq B \).

Let \(X(B) \) denote the set of real functions \(z \) continuous on \([-1, \infty)\) such that \(z(t) = y^*(t), -1 \leq t \leq 0 \), where \(y^*(t) \) is the periodic solution of (3) as described in Remark 1, and \(|z(t)| \leq 2B, t \geq 0 \). With the topology of uniform convergence on compact subsets of \([-1, \infty)\), the set \(X \) of all real functions continuous on \([-1, \infty)\) is a locally convex linear topological space over the reals, and clearly \(X(B) \subset X \).

Define the map \(T \) on \(X(B) \) to \(X \) by

\[
(Tz)(t) = y^*(t) + \frac{1}{\varepsilon} \int_0^t u(t-s)N(s, \varepsilon z(s)) ds, \quad t > 0,
\]
\[
= y^*(t), \quad -1 \leq t \leq 0,
\]

for any \(z \in X(B) \).

Using (5) with (H1) and the boundedness property of \(u(t) \), we have

\[
(Tz)(t) \leq B + 4KB^2 \varepsilon \int_0^t M(s) ds \leq 2B, \quad t \geq 0;
\]

therefore \(Tz \in X(B) \).

Using (6) and the properties of \(u(t) \) given in (4) it follows that

\[
\frac{d}{dt}(Tz)(t) = y^{**}(t) + \frac{1}{\varepsilon} N(t, \varepsilon z(t)) + \frac{1}{\varepsilon} \int_0^t u'(t-s)N(s, \varepsilon z(s)) ds
\]
\[
= y^{**}(t) + \frac{1}{\varepsilon} N(t, \varepsilon z(t)) + \frac{1}{\varepsilon} \int_0^t L(u_{t-s})N(s, \varepsilon z(s)) ds.
\]
SOLUTIONS FOR DELAY-DIFFERENTIAL EQUATIONS

So since L is bounded, $z \in X(B)$, $u(t)$ is bounded for $t > 0$, and N satisfies the conditions in (H_1), it follows that there exists a constant $C(\varepsilon)$ and that

$$\frac{d}{dt}(Tz)(t) \leq C(\varepsilon), \quad t > 0.$$

By a standard argument using the Ascoli-Arzela theorem, it then follows that $TX(B)$ is precompact in the topology of X, and by the Schauder-Tychonov fixed point theorem, there exists a $z^* \in X(B)$ such that

$$z^*(t) = y^*(t) + \frac{1}{\varepsilon} \int_0^t u(t-s)N(s,\varepsilon z^*(s)) \, ds, \quad t > 0,$$

$$z^*(t) = y^*(t), \quad -1 \leq t \leq 0.$$

Since $u(t)$ is a fundamental solution for (3), it follows that $z^*(t)$ solves

$$z'(t) = L(z_t) + \frac{1}{\varepsilon} N(t,\varepsilon z_t), \quad t > 0,$$

$$z(t) = y^*(t), \quad -1 \leq t \leq 0,$$

and so $y(t) = \varepsilon z^*(t)$ solves (2) for $t > 0$ with $y(t) = \varepsilon y^*(t)$ for $-1 \leq t \leq 0$.

If

$$R_0(t) = \frac{1}{\varepsilon} \int_0^t u(t-s)N(s,\varepsilon z^*(s)) \, ds, \quad t \geq 0,$$

then $z^*(t) = y^*(t) + R_0(t)$, $t \geq 0$, and using the properties of u and N and the fact that $z^* \in X(B)$ it follows that

$$|R_0(t)| \leq 4B^2 K\varepsilon \int_0^t M(s) \, ds \leq \frac{\rho^*}{2}, \quad t \geq 0.$$

So

$$|z^*(t) - y^*(t)| \leq \rho^* / 2, \quad t \geq 0.$$

But using the properties of $y^*(t)$ mentioned in Remark 1, there exists $t_n \to \infty$ as $n \to \infty$, $t_{n+1} > t_n$, such that $y^*(t_n) \geq \rho^*$, $n = 1, 2, \ldots$. Using (8) it follows easily that

$$z^*(t_n) \geq \rho^*/2, \quad n = 1, 2, \ldots.$$

Similarly, there exists a sequence $\tau_n \to \infty$ as $n \to \infty$, $\tau_{n+1} > \tau_n$, such that $y^*(\tau_n) \leq -\rho^*$, and so

$$z^*(\tau_n) \leq -\rho^*/2, \quad n = 1, 2, \ldots.$$

Thus the solution $y(t) = \varepsilon z^*(t) \equiv w(t)$ of (2) is oscillatory. Now define ε_0 to be the supremum of the set of all $\varepsilon > 0$ for which this argument holds. Since for such $\varepsilon > 0$, $|w(t)| \leq \varepsilon B$, with B as in Remark 1, and if we take $\delta_0 = 2\varepsilon_0 B$, our theorem is proved. Note that from (5), $\varepsilon_0 \leq (4BK M)^{-1}$, where $M = \int_0^\infty M(t) \, dt$.

REMARK 3. If β is as in (H_2), it can be shown that the t_n and τ_n in our proof above can be chosen such that

$$t_{n+1} - t_n \leq 2\pi / \beta, \quad \text{and} \quad \tau_{n+1} - \tau_n \leq 2\pi / \beta.$$

This follows because $y^*(t)$ can be chosen to be a linear combination of $\sin \beta t$ and $\cos \beta t$. We omit the details.
We now return to the delay logistic equation (1) with \(b > 1 \). If we make the change of variables \(x(t) = N(t) - \frac{a}{b+1} \) (1) becomes
\[
x'(t) = -(\frac{a}{b+1} + x(t))(bx(t) + x(t - 1)),
\]
and the linear part of (9) is the equation
\[
x'(t) = -(\frac{a}{b+1})(bx(t) + x(t - 1)).
\]
It is not difficult to see that all roots of the characteristic equation for (10) have negative real part, cf. [5]. From a result in [3], it also follows that if
\[
a > (b+1)/m(b),
\]
where \(m(b) \) is the unique root of \(b = m \log m - 1 \), then all roots of this characteristic equation are nonreal. A direct examination of this characteristic equation also shows that all nonreal roots must be simple.

Under the change of variable \(y(t) = x(t) \exp(\mu t) \), where \(\mu \) is a real constant, (9) becomes
\[
y'(t) = A(\mu)y(t) + B(\mu)y(t - 1) + f(y(t), y(t - 1)) \exp(-\mu t)
\]
where \(A(\mu) = \mu - ab/(b+1) \), \(B(\mu) = -ae^\mu/(b+1) \), and
\[
f(y,z) = -(by^2 + yze^\mu).\]
It is easy to see that if \(\alpha \) is the real part of a root of the characteristic equation for (9), then \(\mu + \alpha \) is the real part of a corresponding root of the characteristic equation for the linear part of (12), namely
\[
y'(t) = A(\mu)y(t) + B(\mu)y(t - 1).
\]
So if we choose \(\mu = -\max\{\text{Re} \lambda: \lambda \text{ is a root of the characteristic equation for (10)}\} \), then the characteristic equation for (13) has pure imaginary roots \(\pm i\beta, \beta > 0 \), which are simple if (11) holds. Also all other roots of this equation for (13) have negative real parts. Clearly \(\mu > 0 \). So we see that all the hypotheses of Theorem 1 are satisfied for (11) and we have the following.

Theorem 2. If \(b > 1 \) and \(a > (b+1)/m(b) \), where \(m(b) \) is as defined above, then there exist oscillatory solutions of (9) of arbitrarily small amplitude; i.e., there exist solutions of (1) which oscillate about \(\frac{a}{b+1} \).

The proof of this theorem now follows easily, since by Theorem 1, there exist such oscillatory solutions \(y(t) \) of (12) and so the corresponding solutions \(x(t) = y(t) \exp(-\mu t) \) are also oscillatory.

An open question presents itself: under the hypotheses of Theorem 2, are all solutions of (9) oscillatory?

Appendix. In the strict sense, the initial function on \([-1,0]\) for the equation defining \(u(t) \) in (4) is not in \(C \). What is really involved here (a point not entirely clear in [4]) is that \(u(t) \) solves the initial value problem
\[
u'(t) = \begin{cases}
0 & 0 \leq t < 1, \\
\int_{-t}^{0} u(t+s) \, d\eta(s), & t \geq 1,
\end{cases}
\]
and
\[
u(0) = 1.
\]
where $\eta(s)$ is a function of bounded variation which by the Riesz representation theorem characterizes L; i.e. is such that $L(\phi) = \int_{-1}^{0} \phi(s) \, d\eta(s)$ for $\phi \in C$. This initial value problem can be shown to have a solution in a fairly standard way such as by the method of successive approximations.

REFERENCES