HILBERT'S TENTH PROBLEM FOR A CLASS OF RINGS OF ALGEBRAIC INTEGERS

THANASES PHEIDAS

(Communicated by Thomas J. Jech)

ABSTRACT. We show that \(\mathbb{Z} \) is diophantine over the ring of algebraic integers in any number field with exactly two nonreal embeddings into \(\mathbb{C} \) of degree \(\geq 3 \) over \(\mathbb{Q} \).

Introduction. Let \(R \) be a ring. A set \(S \subset R^m \) is called diophantine over \(R \) if it is of the form \(S = \{ x \in R^m : \exists y \in R^n \ p(x, y) = 0 \} \), where \(p \) is a polynomial in \(R[x, y] \). A number field is a finite extension of the field \(\mathbb{Q} \) of rational numbers. If \(K \) is a number field, we denote by \(O_K \) the ring of elements of \(K \) which are integral over the ring \(\mathbb{Z} \) of rational integers.

\(\mathbb{N} \) is the set \(\{0, 1, 2, \ldots \} \) and \(\mathbb{N}_0 \) is the set \(\{1, 2, 3, \ldots \} \).

In this paper we prove

Theorem. Let \(K \) be a number field of degree \(n \geq 3 \) over \(\mathbb{Q} \) with exactly two nonreal embeddings into the field \(\mathbb{C} \) of complex numbers. Then \(\mathbb{Z} \) is diophantine over \(O_K \).

An example of such a number field is \(\mathbb{Q}(d) \) where \(d^3 \) is a rational number which does not have a rational cube root.

In order to prove the theorem, we use the methods of J. Denef in [3]. The terminology and enumeration of the lemmas is kept the same as in [3] so that the similarities and differences of the proofs are clear. The theorem implies

Corollary. Let \(K \) be as in the theorem. Then Hilbert's Tenth Problem in \(O_K \) is undecidable.

The results of [3] and the present paper are the maximum that can be achieved using the present methods. Hence the general conjecture made in [4], namely that Hilbert's Tenth Problem for the integers of any number field is undecidable, remains open.

Let \(K \) be a number field of degree \(n \geq 3 \) over \(\mathbb{Q} \) with exactly two nonreal embeddings into \(\mathbb{C} \). Let \(\sigma_i, i = 1, 2, \ldots, n \), be all the embeddings of \(K \) into \(\mathbb{C} \), enumerated in such a way that \(\sigma_{n-1} \) and \(\sigma_n \) are nonreal. Then the embedding \(\sigma: K \rightarrow \mathbb{C} \) such that \(\sigma(x) = \overline{\sigma_n(x)} \) is distinct from \(\sigma_n \) and from all \(\sigma_i, i \leq n - 2, \)

Received by the editors July 16, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 03B25; Secondary 12B99.

I would like to thank Professor Leonard Lipschitz for his encouragement and help during the preparation of this work.

In the process of publication of this paper I was informed that Alexandra Shlapentokh obtained the same results as part of her thesis at Courant Institute of Mathematical Sciences.

This paper has been supported in part by NSF Grant #DMS 8605-198.
since \(\sigma_n \) is nonreal (i.e. for at least an \(x \in K \), \(\sigma_n(x) \notin \mathbb{R} \), hence \(\sigma(x) \neq \sigma_n(x) \) and \(\sigma(x) \notin \mathbb{R} \)). Hence \(\sigma = \sigma_{n-1} \) and therefore, for every \(x \in K \), \(\sigma_{n-1}(x) = \sigma_n(x) \). In the rest of the paper we identify \(K \) with \(\sigma_1(K) \).

There are two cases: \(\sigma_{n-1}(K) = \sigma_n(K) \) or \(\sigma_{n-1}(K) \neq \sigma_n(K) \). In the first case, let \(b \) be an element of \(K \) such that \(K = \mathbb{Q}(b) \). We have that \(\text{Re} \sigma_n(b) \in \sigma_n(K) \) and \((\text{Im} \sigma_n(b))^2 \in \sigma_n(K) \) where \(\text{Re} x \) and \(\text{Im} x \) are the real and imaginary parts of \(x \), respectively. So, since \(\sigma_n(K) = \mathbb{Q}(\sigma_n(b)) \), \([\sigma_n(K) : \sigma_n(K) \cap \mathbb{R}] = 2 \) and so \(\sigma_n(K) \) is not totally real of degree 2 over \(\sigma_n(K) \cap \mathbb{R} \) which is totally real. By [3] \(\mathbb{Z} \) is diophantine over \(\sigma_n(\mathcal{O}_K) \cap \mathbb{R} \) and by the results of [4] this implies that \(\mathbb{Z} \) is diophantine over \(\sigma_n(\mathcal{O}_K) \). Hence \(\mathbb{Z} \) is diophantine over \(O_K \). Therefore, we will consider only the case where \(\sigma_{n-1}(K) \neq \sigma_n(K) \).

Let \(a \in \mathcal{O}_K \) be such that

\[
|\sigma_i(a)| < 1/2^{4n} \quad \text{for } i = 1, 2, \ldots, n-2 \text{ and } a \neq 0.
\]

For each \(x \in \mathcal{O}_K \), let \(\delta(x) \in \mathbb{C} \) be a number so that \(\delta^2(x) = x^2 - 1 \). Let \(\delta = \delta(a) \) and call \(L = K(\delta) \). By (*) \(a \) may not be a rational integer and therefore \(\delta \notin K \). So \([L : K] = 2 \) and each embedding \(\sigma_i \) of \(K \) into \(\mathbb{C} \) extends to two embeddings \(\sigma_{i,1} \) and \(\sigma_{i,2} \) of \(L \) into \(\mathbb{C} \). The relations \(\sigma_{1,2}(\delta) = -\sigma_{i,1}(\delta) \) are obvious. Call \(\varepsilon = \delta + a \) and \(x_m \) and \(y_m \) the solutions in \(\mathcal{O}_K \) of the equation \(x_m + \delta y_m = (a + \delta)^m \) for \(m \in \mathbb{Z} \).

Clearly \(\varepsilon^m = x_m + \delta y_m, \varepsilon^{-m} = x_m - \delta y_m, \) and \(\varepsilon \) is a unit in \(\mathcal{O}_L \).

Lemma 1. Let \(K \) be any number field, and \(a, b, c \in \mathcal{O}_K \). Suppose \(\delta(a), \delta(b) \notin K \). Let \(m, h, k, j \in \mathbb{N} \). We have:

1. \(\varepsilon \) is a unit in \(\mathcal{O}_K(\delta) \), \(\varepsilon^{-1} = a - \delta \), and \(x_m, y_m \) satisfy the Pell equation \(x^2 - (a^2 - 1)y^2 = 1 \);
2. \(x_m = (\varepsilon^m + \varepsilon^{-m})/2, y_m = (\varepsilon^m - \varepsilon^{-m})/2\delta \);
3. \(x_{m \pm k} = x_m x_k \pm (a^2 - 1)y_m y_k, y_{m \pm k} = x_k y_m \pm x_m y_k ; \)
4. \(h \mid m \Rightarrow y_m \mid y_h ; \)
5. \(y_{hk} \equiv k y_k x_h y_k \mod y_h^3 ; \)
6. \(x_{m+1} = 2ax_m - x_{m-1}, y_{m+1} = 2ay_m - y_{m-1} ; \)
7. \(y_m(a) \equiv m \mod (a - 1) ; \)
8. \(y_m(a) \equiv m \mod (a - 1) \);
9. \(x_{m \pm j} \equiv -x_j \mod x_m ; \)
10. \(y_m(a) \equiv m \mod (a - 1) \).

Proof. See [3].

Lemma 2. Let \(a \) be as above. Then:

1. \(i \leq n - 2, 0 < |\sigma_i(a)| < 1/2^{4n} \text{ and } |\sigma_n(a)| = |\sigma_{n-1}(a)| > 2^{2n}; \)
2. \(i \leq n - 2, j = 1, 2, |\sigma_{i,j}(\varepsilon)| = 1; \)
3. \(|\sigma_{n-1,j}(\varepsilon)| \neq 1 \text{ and } |\sigma_{n,j}(\varepsilon)| \neq 1 \text{ and } \max\{|\sigma_{n-1,1}(\varepsilon)|, |\sigma_{n-1,2}(\varepsilon)|\} > 2^{2n} \).

Proof. (1) Since \(\sigma_{n-1}(a) = \overline{\sigma_n(a)} \), \(|\sigma_{n-1}(a)| = |\sigma_n(a)| \). Moreover \(N_{K/\mathbb{Q}}(a) \) is a rational integer different from zero and hence \(\prod_{i=1}^n |\sigma_i(a)| = |N_{K/\mathbb{Q}}(a)| \geq 1 \) since for \(i \leq n - 2, |\sigma_i(a)| < 1/2^{4n} \text{ we get } |\sigma_{n-1}(a)\cdot |\sigma_n(a)| = |\sigma_n(a)|^2 > 2^{4n(n-2)} \) and since \(n \geq 3, 4n(n-2) \geq 4n \) and so \(|\sigma_n(a)|^2 > 2^{4n} \), i.e. \(|\sigma_n(a)| > 2^{2n} \).
(2) Since, for $i \leq n-2$, $\sigma_i(a) \in R$ and $|\sigma_i(a)| < 1$, we get that $\sigma_{i,j}(\delta) \in iR$. So

$$|\sigma_{i,j}(\epsilon)|^2 = |\sigma_i(a) + \sigma_{i,j}(\delta)|^2 = \sigma_i(a)^2 + |\sigma_{i,j}(\delta)|^2 = 1.$$

(3) $\sigma_{n,1}(\epsilon) + \sigma_{n,2}(\epsilon) = 2\sigma_n(a)$, so that we have that

$$|\sigma_{n,1}(\epsilon)| + |\sigma_{n,2}(\epsilon)| = |\sigma_{n,1}(\epsilon)| + |\sigma_{n,1}(\epsilon)|^{-1} \geq |\sigma_{n,1}(\epsilon) + \sigma_{n,2}(\epsilon)| = 2|\sigma_n(a)| > 2^{2n+1} \quad \text{(by (1))}.$$

So either $|\sigma_{n,1}(\epsilon)| > 2^2$ or $|\sigma_{n,1}(\epsilon)|^{-1} = |\sigma_{n,2}(\epsilon)| > 2^n$. Similarly for σ_{n-1}.

NOTATIONAL REMARK. From now on we adopt the convention that $\sigma_{n-1,1}$ and $\sigma_{n,1}$ are such that $|\sigma_{n-1,1}(\epsilon)| > 1$ and $|\sigma_{n,1}(\epsilon)| > 1$.

REMARK. It is well known that if $\varphi(n)$ is the Euler function of n then

$$\lim_{n \to \infty} \varphi(n) = \infty$$

and hence there is only a finite number of roots of unity such that their degrees over \mathbb{Q} is less than or equal to $2n$. Call d the least common multiple of their orders. It is then obvious that for any root of unity $J \in L$, $J^d = 1$.

LEMMA 3. Let K,a,δ be as above. Let d be as in the last remark. Then all the solutions (x,y) in O_K of the equation $x^2 - \delta^2 y^2 = 1$, for which there are x^* and y^* in O_K such that $x + \delta y = (x^* + \delta y^*)^d$ and $x^{*2} - \delta^2 y^{*2} = 1$, are given by $x = \pm x_m$ and $y = \pm y_m$ for some $m \in \mathbb{Z}$.

PROOF. By the Dirichlet-Minkowski theorem on units (see [1]), there are $n-2$ fundamental units in K. Also L has no real embeddings into \mathbb{C} and so L has $2n/2 - 1 = n - 1$ fundamental units. Consider the set $S = \{x + \delta y \mid x^2 - \delta^2 y^2 = 1, x,y \in O_K\}$. S is clearly in the kernel of the map $N_{L/K} : O_L \setminus \{0\} \to O_K \setminus \{0\}$ considered as a multiplicative homomorphism. For any unit u of O_K, $N_{L/K}(u) = u^2$ and hence the image of $N_{L/K}$ has torsion-free rank at least equal to $n-2$. Therefore, the torsion-free rank of S is at most $(n - 1) - (n - 2) = 1$. Since ϵ is in S and ϵ is torsion free, rank $S = 1$. Hence there is a unit $\epsilon_0 = x + \delta y \in S$ such that every $u \in S$ can be written in the form $u = J\epsilon_0^m$ where $m \notin \mathbb{Z}$ and J is a root of unity in L. In particular $\epsilon = J_0\epsilon_0^e$ for some $e \notin \mathbb{Z}$, $e \neq 0$ and a root of unity $J_0 \in L$ (so $J_0^d = 1$). Clearly we may assume that $e > 0$ interchanging ϵ_0 with ϵ_0^{-1} if necessary. Then $\epsilon_0 - \epsilon_0^{-1} = 2\delta y'$ and $\epsilon - \epsilon^{-1} = 2\delta$, so $\epsilon - \epsilon^{-1} | \epsilon_0 - \epsilon_0^{-1}$. So $|N(2\delta)| \leq |N(\epsilon_0 - \epsilon_0^{-1})|$, where $N = N_{L/\mathbb{Q}}$. We have

$$|N(2\delta)| = 2^{2n}|N(\delta)| = \prod_{i=1}^{n-2} (\sigma_i(a)^2 - 1) \cdot |\sigma_n(a)^2 - 1|^2 \cdot 2^{2n}$$

since $\sigma_n(a)^2 - 1 = \sigma_{n-1}(a)^2 - 1$. Hence

$$|N(2\delta)| \geq 2^{2n} \cdot (1 - 1/2^{16n^2})^{n-2} \cdot |\sigma_n(a)^2 - 1|^2 > 2^{2n} \cdot (1/2^2)^{n-2} \cdot |\sigma_n(a)^2 - 1|^2$$

$$= 2^4 |\sigma_n(a)^2 - 1|^2 \geq 2^4 \cdot |\sigma_n(a)^2 - 1| \geq 2^3 |\sigma_n(a)|^2,$$

using (\ast). Finally

$$|N(2\delta)| > 2^2 \cdot |\sigma_n(a)|^2(i).$$
Now observe that \(\sigma_{n-1,1}(\epsilon_0) = \sigma_{n-1}(x') + \sigma_{n-1,1}(\delta)\sigma_{n-1}(y') \) and \(\sigma_{n-1,2}(\epsilon_0) = \sigma_{n-1}(x') + \sigma_{n-1,2}(\delta)\sigma_{n-1}(y') \). So \(\sigma_{n-1,2}(\epsilon_0) = \sigma_{n-1,1}(\epsilon_0^{-1}) \) and hence
\[
|\sigma_{n-1,1}(\epsilon_0) - \sigma_{n-1,1}(\epsilon_0^{-1})|^2 = |\sigma_{n-1,2}(\epsilon_0) - \sigma_{n-1,2}(\epsilon_0^{-1})|^2.
\]
Similarly for \(\sigma_{n,1}(\epsilon_0) \) and \(\sigma_{n,2}(\epsilon_0) \). Moreover,
\[
(\sigma_{n,1}(\epsilon_0) - \sigma_{n,1}(\epsilon_0^{-1}))^2 = 4(\sigma_n(a)^2 - 1)\sigma_n(y')^2
\]
and
\[
(\sigma_{n-1,1}(\epsilon_0) - \sigma_{n-1,1}(\epsilon_0^{-1}))^2 = 4(\sigma_{n-1}(a)^2 - 1)\sigma_{n-1}(y')^2
\]
and since \(\sigma_n(a)^2 = \sigma_{n-1}(a)^2 \) and \(\sigma_{n}(y')^2 = \sigma_{n-1}(y')^2 \), we get
\[
(\sigma_{n,1}(\epsilon_0) - \sigma_{n,1}(\epsilon_0^{-1}))^2 = (\sigma_{n-1,1}(\epsilon_0) - \sigma_{n-1,1}(\epsilon_0^{-1}))^2.
\]
Also since \([\sigma_{n,1}(\epsilon_0)]^e = [\sigma_{n,1}(\epsilon)] \) and \([\sigma_{n,1}(\epsilon)] > 1 \), we get \([\sigma_{n,1}(\epsilon_0)] > 1 \), using the convention \(e > 0 \). Similarly \([\sigma_{n-1,1}(\epsilon_0)] > 1 \). So we get
\[
|N(\epsilon_0 - \epsilon_0^{-1})| = \prod_{i=1}^{n} |\sigma_{i,j}(\epsilon_0) - \sigma_{i,j}(\epsilon_0^{-1})| \leq 2^{2n-4}
\]
\[
\prod_{i=1}^{n} |\sigma_{i,j}(\epsilon_0) - \sigma_{i,j}(\epsilon_0^{-1})| = 2^{2n-4} \cdot |\sigma_{n,1}(\epsilon_0) - \sigma_{n,1}(\epsilon_0^{-1})|^4
\]
and finally we get
\[
|N(\epsilon_0 - \epsilon_0^{-1})| \leq 2^{2n-4}|\sigma_{n,1}(\epsilon_0) - \sigma_{n,1}(\epsilon_0^{-1})|^4.
\]
Now clearly we have
\[
[\sigma_{n,1}(\epsilon_0) - \sigma_{n,1}(\epsilon_0^{-1})]^2 = [\sigma_{n,1}(\epsilon_0)]^2 + [\sigma_{n,1}(\epsilon_0)^{-2} - 2] = \leq [\sigma_{n,1}(\epsilon_0)]^2 + [\sigma_{n,1}(\epsilon_0)^{-2} - 2] = \leq 2([\sigma_{n,1}(\epsilon_0)]^2 + [\sigma_{n,1}(\epsilon_0)^{-2}])
\]
and so
\[
[\sigma_{n,1}(\epsilon_0) - \sigma_{n,1}(\epsilon_0^{-1})]^4 \leq 4([\sigma_{n,1}(\epsilon_0)]^2 + [\sigma_{n,1}(\epsilon_0)^{-2}]^2),
\]
and hence
\[
|N(\epsilon_0 - \epsilon_0^{-1})| \leq 2^{2n-2}([\sigma_{n,1}(\epsilon_0)]^2 + [\sigma_{n,1}(\epsilon_0)^{-2}]^2).
\]
If \(|\epsilon| = |\epsilon_0|^e \) and \(e \geq 4 \) then \([\sigma_{n,1}(\epsilon)] \geq [\sigma_{n,1}(\epsilon_0)]^4 > 1 \) and so
\[
|N(\epsilon_0 - \epsilon_0^{-1})| \leq 2^{2n-2}([\sigma_{n,1}(\epsilon_0)]^2 + [\sigma_{n,1}(\epsilon_0)^{-2}]^2)
\]
\[
= 2^{2n-2}([\sigma_{n,1}(\epsilon_0)]^4 + [\sigma_{n,1}(\epsilon_0)^{-4} + 2] \leq 2^{2n-1}([\sigma_{n,1}(\epsilon_0)]^4 + [\sigma_{n,1}(\epsilon_0)^{-4}])
\]
\[
\leq 2^n([\sigma_{n,1}(\epsilon)]^4 \leq 2^n([\sigma_{n,1}(\epsilon)] + [\sigma_{n,1}(\delta)]) = 2^n([\sigma_{n}(a)] + [\sigma_{n,1}(\delta)])
\]
\[
\leq 2^n([\sigma_{n}(a)] + 2[\sigma_{n}(a)]) \leq 2^{n+2}[\sigma_{n}(a)].
\]
Combining the last inequality with (i) above gives \([\sigma_{n}(a)] < 2^n \) which contradicts Lemma 2(1). So \(e \leq 3 \). Therefore, if \(x^2 + \delta^2 y^2 = 1 \) and \(x + \delta y = (x^* + \delta y^*)^6d \), since for some \(n \in \mathbb{Z} \), \(x^* + \delta y^* = J\epsilon_0^n \) and \(Jd = 1 \) then \(x + \delta y = \epsilon_0^{6n} = \epsilon^{n_1} \) and hence \(x = \pm x_n \) and \(y = \pm y_n \) where \(n_1 = 6n/e \).
LEMMA 4. Assume that K, a are as above, $h, m \in \mathbb{N}$ and
\[|\sigma_i(y_h)| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \ldots, n - 2 \quad \text{(condition (1)).} \]
Then
\begin{enumerate}
\item $|\sigma_n(y_h)| > |\sigma_n,1(\epsilon)|^h/4|\sigma_n,1(\delta)|$ and $|\sigma_n,1(\epsilon)| > 2^{2n}$,
\item $y_h | y_m \Rightarrow h | m$ (the first divisibility is meant in O_K, the second in \mathbb{Z}),
\item $y_h^n | y_m \Rightarrow y_h | m$ in O_K.
\end{enumerate}

PROOF. (1) We have proved that $|\sigma_n,1(\epsilon)| > 2^{2n}$. It is trivial to see that from this fact the following immediately follows: $|\sigma_n,1(\epsilon)|^h - |\sigma_n,1(\epsilon)|^{-h} \geq |\sigma_n,1(\epsilon)|^h/\sqrt{2}$ for $h \in \mathbb{N}_0$. So
\[|\sigma_n(y_h)| = \frac{|\sigma_n,1(\epsilon)^h - \sigma_n,1(\epsilon)^{-h}|}{2|\sigma_n,1(\delta)|} > \frac{|\sigma_n,1(\epsilon)^h|}{2\sqrt{2}|\sigma_n,1(\delta)|} \geq \frac{|\sigma_n,1(\epsilon)|^h}{4|\sigma_n,1(\delta)|}. \]

(2) Suppose $y_h | y_m$ but $h \nmid m$. Set $m = hq + k$, with $q, k \leq \mathbb{N}$ and $0 < k < h$. Lemma 1 yields $y_m = x_k y_{hq} + x_{hq} y_k$. Notice that $y_h | y_{hq}$, hence $y_h | x_{hq} y_k$. Since $x_{hq}^2 - (\sigma^2 - 1)y_{hq}^2 = 1$, the elements y_h and x_{hq} are relatively prime. Thus $y_h | y_k$ and $|N_{K/Q}(y_h)| \leq |N_{K/Q}(y_k)|$. From the Introduction we have that $\sigma_{n-1}(y_h) = \sigma_n(y_h)$. Also from condition (1) (1),
\[|N_{K/Q}(y_k)| = |\sigma_{n-1}(y_k)| \cdot |\sigma_n(y_k)| \cdot \prod_{i \leq n-2} |\sigma_i(y_k)| \geq |\sigma_n(y_k)|^2 \cdot \left(\frac{1}{2}\right)^{n-2} \]
Now observe that, for $i \leq n - 2$, $\sigma_i(x_k)^2 - (\sigma_i(a)^2 - 1) \cdot \sigma_i(y_k)^2 = 1$ and $\sigma_i(a)^2 < 1$. So $|\sigma_i(y_k)| < 1$ for $i \leq n - 2$. Therefore,
\[|N_{K/Q}(y_k)| = |\sigma_{n-1}(y_k)| \cdot |\sigma_n(y_k)| \cdot \prod_{i \leq n-2} |\sigma_i(y_k)| < |\sigma_n(y_k)|^2 \]
\[= \frac{|\sigma_n,1(\epsilon)^k - \sigma_n,1(\epsilon)^{-k}|^2}{(2|\sigma_n,1(\delta)|)^2} \leq \left(\frac{2|\sigma_n,1(\epsilon)|^k}{2|\sigma_n,1(\delta)|}\right)^2 \]
Hence
\[\left(\frac{1}{2}\right)^{n-2} \frac{|\sigma_n,1(\epsilon)|^{2h}}{4^2|\sigma_n,1(\delta)|^2} < \frac{|\sigma_n,1(\epsilon)|^{2k}}{|\sigma_n,1(\delta)|^2}, \]
i.e. $|\sigma_n,1(\epsilon)|^{2h - 2k} < 2^n$ which contradicts (1) since $h - k \geq 1$. Hence $h | m$.

(3) is obvious since $(\epsilon^h - \epsilon^{-h})/(\epsilon^h - \epsilon^{-h}) \equiv 1 \mod(\epsilon^h - \epsilon^{-h})$ where u is a unit and hence if $y^2 | y_m$, by (2) $h | m$, i.e. $m = lh$ for some $l \in \mathbb{N}$, and so $y_m/y_h \equiv 0 \mod y_h$ which means that $m/h \equiv 0 \mod y_h$, i.e. $m \equiv 0 \mod y_h$.

LEMMA 5. If K, a are as above and $k, j \in \mathbb{N}$, $m \in \mathbb{N}_0$ and $|\sigma_i(x_m)| \geq \frac{1}{2}$ for $i = 1, \ldots, n - 2$, then if $x_k \equiv \pm x_j \mod x_m$ we get that $k \equiv \pm j \mod m$ (the two ± do not have to correspond).

PROOF. Set $k = 2mq \pm k_0$, $j = 2mh \pm j_0$ with $q, h, k_0, j_0 \in \mathbb{N}$ and $k_0 \leq m$, $j_0 \leq m$. Lemma 1(9) implies $x_k \equiv \pm x_{k_0} \mod x_m$, $x_j \equiv \pm x_{j_0} \mod x_m$. Hence, it is
sufficient to prove the lemma for $k \leq m, j \leq m$. Thus suppose $x_k \equiv \pm x_j \mod x_m$, $k \leq m$ and $j \leq m$. We shall prove that $x_k = \pm x_j$. Assume $x_k \neq \pm x_j$; then $|N_{K/Q}(x_m)| \leq |N_{K/Q}(x_k \pm x_j)|$. We may assume without loss of generality that $|\sigma_n(x_k)| \geq |\sigma_n(x_k)|$. Then by the hypothesis of the lemma,

$$
|N_{K/Q}(x_m)| = |\sigma_n(x_m)|^2 \cdot \prod_{i \leq n-2} |\sigma_i(x_m)| \geq |\sigma_n(x_m)|^2 \cdot \left(\frac{1}{2}\right)^{n-2}
$$

$$
= \left(\frac{1}{2}\right)^{n-2} \cdot \frac{|\sigma_n(\varepsilon)|^m + |\sigma_n(\varepsilon)|^{-m}|^2}{4} \geq \left(\frac{1}{2}\right)^n \left(|\sigma_n(\varepsilon)|^m - |\sigma_n(\varepsilon)|^{-m}\right)^2
$$

$$
> \left(\frac{1}{2}\right)^{n+1} |\sigma_n(\varepsilon)|^{2m}.
$$

The last inequality holds by Lemma 4(1). Also

$$
|N_{K/Q}(x_k \pm x_j)| \leq \left(\prod_{i \leq n-2} |\sigma_i(x_k)| + |\sigma_i(x_j)|\right)^2 \cdot \prod_{i \leq n-2} \left(|\sigma_i(x_k)| + |\sigma_i(x_j)|\right)
$$

$$
< (2|\sigma_n(x_k)|)^2 \cdot 2^{n-2} = |\sigma_n(x_k)|^2 \cdot 2^n \leq |\sigma_n(\varepsilon)|^{2k} \cdot 2^n.
$$

So $|\sigma_n(\varepsilon)|^{2m-2k} < 2^{n+1}$, i.e. $|\sigma_n(\varepsilon)|^{m-k} < 2^{n+1} < 2^{2m}$ which contradicts Lemma 4(1), if $m \neq k$. So we get $x_m = x_k$ and hence $x_m | x_j$. So we conclude that $|N_{K/Q}(x_m)| \leq |N_{K/Q}(x_j)|$. As we proved above,

$$
|N_{K/Q}(x_m)| \geq \left(\frac{1}{2}\right)^{n+1} |\sigma_n(\varepsilon)|^{2m}.
$$

Also

$$
|N_{K/Q}(x_j)| = \prod_{i \leq n-2} |\sigma_i(x_j)| \cdot |\sigma_n(x_j)|^2 \leq |\sigma_n(x_j)|^2
$$

$$
= \frac{|\sigma_n(\varepsilon)|^j + |\sigma_n(\varepsilon)|^{-j}|^2}{4} \leq |\sigma_n(\varepsilon)|^{2j}.
$$

Hence $|\sigma_n(\varepsilon)|^{2m-2j} \leq 2^{n+1}$, which by Lemma 4(1) can happen only if $2m-2j = 0$, i.e. $m = j$. So $x_k = \pm x_j$. If $x_k = x_j$, then $\varepsilon^k + \varepsilon^{-k} = \varepsilon^j + \varepsilon^{-j}$, i.e. $\varepsilon^k - \varepsilon^j = \varepsilon^{-j} - \varepsilon^{-k}$, i.e. $\varepsilon^{-k}(1 - \varepsilon^{-k}) = \varepsilon^j(1 - \varepsilon^{-j})$, i.e. $(\varepsilon^k + j + 1)(\varepsilon^{-k} - j - 1) = 0$, i.e. $k = \pm j$. Similarly, if $x_k = -x_j$, $\varepsilon^k + \varepsilon^{-k} = -\varepsilon^j - \varepsilon^{-j}$, i.e. $(\varepsilon^k + j)(1 + \varepsilon^{-k} - j) = 0$, i.e. $k = \pm j$.

Lemma 6. Suppose that K and a are as above with the additional hypothesis that $\sigma_n(\varepsilon)/\sigma_n(\varepsilon)$ is not a root of unity. Let $k \in \mathbb{N}_0$. Then there exist multiples m, h of k such that $|\sigma_i(x_m)| > \frac{1}{2}$ for $i = 1, 2, \ldots, n - 2$ and $|\sigma_i(y_h)| > \frac{1}{2}$ for $i = 1, 2, \ldots, n - 2$.

Proof. We shall prove that if

$$
(1) \quad \sigma_{1,1}(\varepsilon)^{k_1} \sigma_{2,1}(\varepsilon)^{k_2} \cdots \sigma_{n-1,1}(\varepsilon)^{k_{n-2}} = 1,
$$

then $k_1 = k_2 = \cdots = k_{n-2} = 0$. Let K_1 be the least normal extension of K and L_1 the least normal extension of L, so $K_1 \subset L_1$. It is enough to prove that for each i, $i \leq n - 2$, there is an automorphism τ of K_1 such that $\tau \sigma_i = \sigma_{n-1} \text{ and } \tau \sigma_{n-1} = \sigma_i$, and for all $j \neq i, n - 1$, $\tau \sigma_j = \sigma_j$, where by $\tau \sigma_j$ we mean the restriction of τ on $\sigma_j(K)$ composition σ_j. This is enough because for each $i \leq n - 2$, applying the corresponding τ extended to L_1 on both sides of (1) and taking absolute values, we get $|\sigma_{n,j}(\varepsilon)^{k_i}| = 1$ where $j = 1$ or 2; hence $k_i = 0$ and hence the result follows by the theorem of Kronecker (see [5]).
Notice that every automorphism of K_1 determines a permutation of the embeddings of K and conversely every permutation of these embeddings determines at most one automorphism of K_1. So when we write $\tau = (\sigma_i, \sigma_j)$ we mean that τ is the unique automorphism of K_1 which transposes σ_i and σ_j. Since $\sigma_{n-1}(K) \neq \sigma_n(K)$, the degree of the extension $\sigma_{n-1}(K)\sigma_n(K)$ over $\sigma_n(K)$ is at least 2, so the identity embedding of $\sigma_n(K)$ into C extends to at least one nonidentity embedding of $\sigma_{n-1}(K)\sigma_n(K)$ into C. This embedding extends to an automorphism τ_1 of K_1. Since τ_1 is not the identity on $\sigma_{n-1}(K)\sigma_n(K)$ and is the identity on $\sigma_n(K)$, it can not be the identity on $\sigma_{n-1}(K)$. So, since $\tau_1\sigma_n \neq \sigma_n$ and $\tau_1\sigma_{n-1} \neq \sigma_n$, $\tau_1\sigma_{n-1}$ is a real embedding of K, say $\tau_1\sigma_{n-1} = \sigma_{t_0}$. Let τ_0 be the automorphism of K_1 such that $\tau_0(x) = \bar{x}$. Then $\tau_1\tau_0\tau_1^{-1} = (\sigma_{t_0}, \sigma_n)$, since τ_0 is a transposition (σ_{t_0}, σ_n).

Now assume that $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$. Applying $\tau_1\tau_0\tau_1^{-1}$ to both sides we find $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$ which is impossible since $\sigma_{n-1}(K)$ is nonreal and the right-hand side of the relation is real. So

$$\sigma_{n-1}(K) \not\subset \sigma_1(K) \cdots \sigma_{n-2}(K)\sigma_n(K).$$

Let $i \leq n - 2$. Consider the extension

$$\sigma_{n-1}(K)\sigma_1(K) \cdots \sigma_{i-1}(K)\sigma_i(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$$

over $\sigma_1(K) \cdots \sigma_{i-1}(K)\sigma_i(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$. This extension may not be of degree 1, otherwise $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{i-1}(K)\sigma_i(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$, contrary to what we proved. So the identity embedding in C of the ground field extends to at least one nonidentity embedding of the extension field in C. Let τ be an extension of this embedding to an automorphism of K_1. Clearly, since $\tau\sigma_n \neq \sigma_{n-1}$ and $\tau\sigma_j = \sigma_j$ for $j \neq i, n - 1$, we must have $\tau\sigma_{n-1} = \sigma_i$ and hence $\tau = (\sigma_i, \sigma_{n-1})$ and this is what we should prove in order to conclude the lemma.

Lemma 7. Suppose that K and a are as above and that $|\sigma_i(a)| < 1/28^n$ for $i = 1, 2, \ldots, n - 2$. Let $m \in \mathbb{N}_0$. Then there exists an element b in O_K such that:

1. $b \equiv 1 \mod y_m(a)$;
2. $b \equiv a \mod x_m(a)$;
3. b satisfies (\ast).

Proof. Set $b = x_m^{2s} + a(1 - x_m^2)$ with $s \in \mathbb{N}_0$ to be determined. Since $x_m^2 - (a^2 - 1)y_m^2 = 1$, we have $x_m^2 \equiv 1 \mod y_m$; hence (1) holds. Also (2) holds obviously. Since $|\sigma_i(x_m)| < 1$ for $i = 1, 2, \ldots, n - 2$ and $|\sigma_n(x_m)| = |\sigma_n(x_m)|^2 > 1$, we can choose s large enough so that $|\sigma_i(x_m)^{2s}| < 1/28^n$ for $i = 1, 2, \ldots, n - 2$. Then for $i = 1, 2, \ldots, n - 2$ the following holds:

$$|\sigma_i(b)| \leq |\sigma_i(x_m)^{2s}| + |\sigma_i(a)| \cdot |1 - \sigma_i(x_m)^2| < |\sigma_i(x_m)^{2s}| + \frac{1}{28^n} < \frac{2}{28^n} < \frac{1}{2^n}.$$

Lemma 8. Let K be any number field of degree n over \mathbb{Q}, and let $\sigma_1, \sigma_2, \ldots, \sigma_n$ be the embeddings of K into C. Let $\xi, z \in O_K$ and $z \neq 0$. If $2^{n+1}\xi^n(\xi + 1)^n \cdots (\xi + n - 1)^n|z$, then $|\sigma_i(\xi)| < \frac{1}{2}|N(z)|^{1/n}$ for all $i = 1, 2, \ldots, n$.

Proof. See [3].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
MAIN LEMMA. Let K be as above and $a \in O_K$ satisfying
$|\sigma_i(a)| < 1/2^{8n}$ for $i = 1, 2, \ldots, n - 2$. (**)
and let d be defined as in the Remark before Lemma 3. Define the subset S of
O_K by $\xi \in S \iff \xi \in O_K \wedge \exists x, y, w, z, u, s, t, x', y', w', z', u', v', s', t', b \in O_K$:

1. $x'^2 - (a^2 - 1)y'^2 = 1,$
2. $w'^2 - (a^2 - 1)z'^2 = 1,$
3. $v'^2 - (a^2 - 1)u'^2 = 1,$
4. $s'^2 - (b^2 - 1)t'^2 = 1,$
5. $x + \delta(a)y = (x' + \delta(a)y')^d,$
6. $w + \delta(a)z = (w' + \delta(a)z')^d,$
7. $u + \delta(a)v = (u' + \delta(a)v')^d,$
8. $s + \delta(b)t = (s' + \delta(b)t')^d,$
9. $|\sigma_i(b)| < 1/2^{4n}, \quad i = 1, 2, \ldots, n - 2,$
10. $|\sigma_i(z)| \geq \frac{1}{2}, \quad i = 1, 2, \ldots, n - 2,$
11. $|\sigma_i(u)| \geq \frac{1}{2}, \quad i = 1, 2, \ldots, n - 2,$
12. $v \neq 0,$
13. $z^2 \mid v,$
14. $b \equiv 1 \mod z,$
15. $b \equiv a \mod u,$
16. $s \equiv x \mod u,$
17. $t \equiv \xi \mod z,$
18. $2^{n+1}(\xi + 1)^n \cdots (\xi + n - 1)^n x^n (x + 1)^n \cdots (x + n - 1)^n | z.$

Then $N_0 \subset S \subset \mathbb{Z}$.

PROOF. (i) Suppose there are $x, y, \ldots, b \in O_K$ satisfying (1)–(14). We shall
prove that $\xi \in \mathbb{Z}$. From (***) and (5) it follows that a and b satisfy (*). Hence from
(1)–(4), (1*)–(4*) and Lemma 3 it follows that there are $k, h, m, j \in \mathbb{N}$ such that:

$$x = \pm x_k(a), \quad y = \pm y_k(a),$$
$$w = \pm x_h(a), \quad z = \pm y_h(a),$$
$$u = \pm x_m(a), \quad v = \pm y_m(a),$$
$$s = \pm x_j(b), \quad t = \pm y_j(b).$$

So (6)–(13) become

$$(6') \quad |\sigma_i(y_h(a))| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \ldots, n - 2,$$
$$(7') \quad |\sigma_i(x_m(a))| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \ldots, n - 2,$$
$$(8') \quad y_m(a) \neq 0,$$
$$(9') \quad y_k^2(a) \mid y_m(a),$$
$$(10') \quad b \equiv 1 \mod y_h(a),$$
$$(11') \quad b \equiv a \mod x_m(a),$$
HILBERT'S TENTH PROBLEM FOR ALGEBRAIC INTEGERS

(12') \[x_j(b) \equiv \pm x_k(a) \mod x_m(a), \]
(13') \[y_j(b) \equiv \pm \xi \mod y_h(a). \]

We have

\[y_j(b) \equiv j \mod (b - 1) \quad \text{(Lemma 1(7))}, \]
\[y_j(b) \equiv \pm j \mod y_h(a) \quad \text{(by (10'))}, \]

(15) \[x_j(b) \equiv x_j(a) \mod x_m(a) \quad \text{(by (11') and Lemma 1(8))}, \]
\[x_j(a) \equiv \pm x_k(a) \mod x_m(a) \quad \text{(by (12'))}, \]

(16) \[k \equiv \pm j \mod m \quad \text{(by (7'), (8') and Lemma 5)}, \]
\[y_h(a) \mid m \quad \text{(by (6'), (9') and Lemma 4)}, \]
\[k \equiv \pm j \mod y_h(a) \quad \text{(by (16))}, \]

(17) \[k \equiv \pm \xi \mod z \quad \text{(by (15))}, \]
\[|\sigma_i(\xi)| < \frac{1}{2} |N(z)|^{1/n} \quad \text{for } i = 1, 2, \ldots, n \quad \text{(by (14) and Lemma 8)}, \]
\[k < |\sigma_n(x_k(a))| < \frac{1}{2} |N(z)|^{1/n} \quad \text{by (14) and Lemma 8)}, \]
\[|\sigma_i(k \pm \xi)| < |N(z)|^{1/n} \quad \text{for } i = 1, 2, \ldots, n. \]

So \[|N(k + \xi)| < |N(z)| \] and so \[k = \pm \xi \] (by (17)).

(ii) Conversely, suppose \(\xi \in \mathbb{N}_0 \). We shall prove that there are \(x, y, \ldots, b \in O_K \) satisfying (1)–(14). Set \(k = \xi \in \mathbb{N}_0 \), \(x' = x_k(a) \) and \(y' = y_k(a) \); then (1) and (1*) are satisfied. By Lemmas 1(10), (4) and 6 there exists an \(h \in \mathbb{N}_0 \) such that the left-hand side of (14) divides \(y_h(a) \) and \(|\sigma_i(y_h(a))| \geq \frac{1}{2} \) for \(i = 1, 2, \ldots, n - 2 \). Set \(u' = x_h(a) \) and \(z = y_h(a) \), then (2), (6) and (14) are satisfied. Again by Lemmas 1(10), (4) and 6, there exists an \(m \in \mathbb{N}_0 \) such that \(y^2_h(a) \mid y_m(a) \) and \(|\sigma_i(x_m(a))| \geq \frac{1}{2} \) for \(i = 1, 2, \ldots, n - 2 \). Set \(u' = x_m(a) \) and \(v' = y_m(a) \); then (3), (3*) and (7)–(9) are satisfied. From Lemma 7 it follows that there exists \(b \in O_K \) satisfying (10), (11) and (5). Set \(s' = x_k(b) \) and \(t' = y_k(b) \); then (4) is satisfied. Lemma 1(8) and (11) imply (12) and Lemma 1(7) and (10) imply (13). Thus all conditions are satisfied and \(\xi \in S \).

Lemma 9. Let \(K \) be any number field.

(i) If \(R_1 \) and \(R_2 \) are diophantine relations over \(O_K \), then \(R_1 \lor R_2 \) and \(R_1 \land R_2 \) are also diophantine over \(O_K \).

(ii) The relation \(x \neq 0 \) is diophantine over \(O_K \).

Proof. See [3].

Lemma 10. Let \(K \) be any number field, and \(\sigma \) an embedding of \(K \) into \(\mathbb{R} \). Then the relation \(\sigma(x) \geq 0 \) is diophantine over \(O_K \).

Proof. See [3].

Theorem. Let \(K \) be a number field with exactly two nonreal embeddings into \(\mathbb{C} \), of degree \(n \geq 3 \) over \(\mathbb{Q} \). Then \(\mathbb{Z} \) is diophantine over \(O_K \).

Proof. By Minkowski’s lemma on convex bodies it follows that there is an \(a \) satisfying (**) of the Main Lemma. By Lemma 10 the relations (5)–(7) are
diophantine over O_K and clearly the relations (1*)–(4*) can be written so that $\delta(a)$ and $\delta(b)$ do not occur, i.e. (1*)–(4*) are diophantine over O_K. So the set S of the Main Lemma is diophantine over L_K and hence \mathbb{Z} is also diophantine over O_K.

REFERENCES

Computer Technology Institute, Patras 26110, Greece

Current address: Department of Mathematics, Florida International University, University Park, Miami, Florida 33199