HILBERT'S TENTH PROBLEM FOR A CLASS OF RINGS OF ALGEBRAIC INTEGERS

THANASES PHEIDAS

(Communicated by Thomas J. Jech)

ABSTRACT. We show that \(\mathbb{Z} \) is diophantine over the ring of algebraic integers in any number field with exactly two nonreal embeddings into \(\mathbb{C} \) of degree \(\geq 3 \) over \(\mathbb{Q} \).

Introduction. Let \(R \) be a ring. A set \(S \subset R^m \) is called diophantine over \(R \) if it is of the form \(S = \{ x \in R^m : \exists y \in R^n \ p(x, y) = 0 \} \), where \(p \) is a polynomial in \(R[x, y] \). A number field is a finite extension of the field \(\mathbb{Q} \) of rational numbers. If \(K \) is a number field, we denote by \(O_K \) the ring of elements of \(K \) which are integral over the ring \(\mathbb{Z} \) of rational integers.

\(\mathbb{N} \) is the set \(\{0, 1, 2, \ldots \} \) and \(\mathbb{N}_0 \) is the set \(\{1, 2, 3, \ldots \} \).

In this paper we prove

Theorem. Let \(K \) be a number field of degree \(n \geq 3 \) over \(\mathbb{Q} \) with exactly two nonreal embeddings into the field \(\mathbb{C} \) of complex numbers. Then \(\mathbb{Z} \) is diophantine over \(O_K \).

An example of such a number field is \(\mathbb{Q}(d) \) where \(d^3 \) is a rational number which does not have a rational cube root.

In order to prove the theorem, we use the methods of J. Denef in [3]. The terminology and enumeration of the lemmas is kept the same as in [3] so that the similarities and differences of the proofs are clear. The theorem implies

Corollary. Let \(K \) be as in the theorem. Then Hilbert's Tenth Problem in \(O_K \) is undecidable.

The results of [3] and the present paper are the maximum that can be achieved using the present methods. Hence the general conjecture made in [4], namely that Hilbert’s Tenth Problem for the integers of any number field is undecidable, remains open.

Let \(K \) be a number field of degree \(n \geq 3 \) over \(\mathbb{Q} \) with exactly two nonreal embeddings into \(\mathbb{C} \). Let \(\sigma_i, i = 1, 2, \ldots, n \), be all the embeddings of \(K \) into \(\mathbb{C} \), enumerated in such a way that \(\sigma_{n-1} \) and \(\sigma_n \) are nonreal. Then the embedding \(\sigma: K \to \mathbb{C} \) such that \(\sigma(x) = \overline{\sigma_n(x)} \) is distinct from \(\sigma_n \) and from all \(\sigma_i, i \leq n - 2 \),

Received by the editors July 16, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 03B25; Secondary 12B99.

I would like to thank Professor Leonard Lipschitz for his encouragement and help during the preparation of this work.

In the process of publication of this paper I was informed that Alexandra Shlapentokh obtained the same results as part of her thesis at Courant Institute of Mathematical Sciences.

This paper has been supported in part by NSF Grant #DMS 8605-198.
since \(\sigma_n \) is nonreal (i.e. for at least an \(x \in K \), \(\sigma_n(x) \notin \mathbb{R} \), hence \(\sigma(x) \neq \overline{\sigma_n(x)} \) and \(\overline{\sigma(x)} \notin \mathbb{R} \)). Hence \(\sigma = \sigma_{n-1} \) and therefore, for every \(x \in K \), \(\sigma_{n-1}(x) = \overline{\sigma_n(x)} \). In the rest of the paper we identify \(K \) with \(\sigma_1(K) \).

There are two cases: \(\sigma_{n-1}(K) = \sigma_n(K) \) or \(\sigma_{n-1}(K) \neq \sigma_n(K) \). In the first case, let \(b \) be an element of \(K \) such that \(K = \mathbb{Q}(b) \). We have that \(\text{Re}\sigma_n(b) \in \sigma_n(K) \) and \((\text{Im}\sigma_n(b))^2 \in \sigma_n(K) \) where \(\text{Re} x \) and \(\text{Im} x \) are the real and imaginary parts of \(x \), respectively. So, since \(\sigma_n(K) = \mathbb{Q}(\sigma_n(b)) \), \([\sigma_n(K) : \sigma_n(K) \cap \mathbb{R}] = 2 \) and \(\sigma_n(K) \) is nontotally real of degree 2 over \(\sigma_n(K) \cap \mathbb{R} \) which is totally real. By [3] \(\mathbb{Z} \) is diophantine over \(\sigma_n(O_K) \cap \mathbb{R} \) and by the results of [4] this implies that \(\mathbb{Z} \) is diophantine over \(\sigma_n(O_K) \). Hence \(\mathbb{Z} \) is diophantine over \(O_K \). Therefore, we will consider only the case where \(\sigma_{n-1}(K) \neq \sigma_n(K) \).

Let \(a \in O_K \) be such that

\[(*) \quad |\sigma_i(a)| < 1/2^{4n} \quad \text{for} \quad i = 1, 2, \ldots, n-2 \quad \text{and} \quad a \neq 0. \]

For each \(x \in O_K \), let \(\delta(x) \in \mathbb{C} \) be a number so that \(\delta^2(x) = x^2 - 1 \). Let \(\delta = \delta(a) \) and call \(L = K(\delta) \). By (*) \(a \) may not be a rational integer and therefore \(\delta \notin K \). So \([L : K] = 2 \) and each embedding \(\sigma_i \) of \(K \) into \(\mathbb{C} \) extends to two embeddings \(\sigma_{i,1} \) and \(\sigma_{i,2} \) of \(L \) into \(\mathbb{C} \). The relations \(\sigma_{i,2}(\delta) = -\sigma_{i,1}(\delta) \) are obvious. Call \(\varepsilon = \delta + a \) and \(x_m \) and \(y_m \) the solutions in \(O_K \) of the equation \(x_m + \delta y_m = (a + \delta)^m \) for \(m \in \mathbb{Z} \). Clearly \(e^m = x_m + \delta y_m, e^{-m} = x_m - \delta y_m \), and \(\varepsilon \) is a unit in \(O_L \).

Lemma 1. Let \(K \) be any number field, and \(a, b, c \in O_K \). Suppose \(\delta(a), \delta(b) \notin K \). Let \(m, h, k, j \in N \). We have:

1. \(\varepsilon \) is a unit in \(O_K(\delta), \varepsilon^{-1} = a - \delta, \) and \(x_m, y_m \) satisfy the Pell equation \(x^2 - (a^2 - 1)y^2 = 1; \)
2. \(x_m = (\varepsilon^m + \varepsilon^{-m})/2, y_m = (\varepsilon^m - \varepsilon^{-m})/2\delta; \)
3. \(x_{m \pm k} = x_kx_m \pm (a^2 - 1)y_ky_m, y_{m \pm k} = x_ky_m \pm x_my_k; \)
4. \(h \mid m \Rightarrow y_m \mid y_h; \)
5. \(y_{hk} \equiv kx_h^{-1}y_k \mod y_h^3; \)
6. \(x_{m+1} = 2ax_m - x_{m-1}, y_{m+1} = 2ay_m - y_{m-1}; \)
7. \(y_m(a) \equiv m \mod (a - 1); \)
8. if \(a \equiv b \mod c, \) then \(x_m(a) \equiv x_m(b) \mod c \) and \(y_m(a) \equiv y_m(b) \mod c; \)
9. \(x_{2m \pm j} \equiv -x_j \mod x_m; \)
10. if \(n \in O_K \) and \(n \neq 0, \) then there exists an \(m \in N_0 \) such that \(n \mid y_m(a). \)

Proof. See [3].

Lemma 2. Let \(a \) be as above. Then:

1. for \(i \leq n - 2, \) \(0 < |\sigma_i(a)| < 1/2^{4n} \) and \(|\sigma_n(a)| = |\sigma_{n-1}(a)| > 2^{2n}; \)
2. for \(i \leq n - 2, \) \(j = 1, 2, \) \(|\sigma_{i,j}(\varepsilon)| = 1; \)
3. \(|\sigma_{n-1,j}(\varepsilon)| \neq 1 \) and \(|\sigma_{n,j}(\varepsilon)| \neq 1 \) and

\[\max\{|\sigma_{n,1}(\varepsilon)|, |\sigma_{n,2}(\varepsilon)|\} = \max\{|\sigma_{n-1,1}(\varepsilon)|, |\sigma_{n-1,2}(\varepsilon)|\} > 2^{2n}. \]

Proof. (1) Since \(\sigma_{n-1}(a) = \overline{\sigma_n(a)}, |\sigma_{n-1}(a)| = |\sigma_n(a)|. \) Moreover \(N_{K/Q}(a) \)
 is a rational integer different from zero and hence \(\prod_{i=1}^n |\sigma_i(a)| = |N_{K/Q}(a)| \geq 1. \) Since for \(i \leq n - 2, |\sigma_i(a)| < 1/2^{4n} \) we get \(|\sigma_{n-1}(a)| \cdot |\sigma_n(a)| = |\sigma_n(a)|^2 > 2^{4n(n-2)} \) and since \(n \geq 3, 4n(n-2) \geq 4n \) and so \(|\sigma_n(a)|^2 > 2^{4n}, \) i.e. \(|\sigma_n(a)| > 2^{2n}. \)
(2) Since, for \(i \leq n - 2 \), \(\sigma_i(a) \in R \) and \(|\sigma_i(a)| < 1 \), we get that \(\sigma_{i,j}(\delta) \in iR \). So
\[
|\sigma_{i,j}(\varepsilon)|^2 = |\sigma_i(a) + \sigma_{i,j}(\delta)|^2 = \sigma_i(a)^2 + |\sigma_{i,j}(\delta)|^2 = 1.
\]

(3) \(\sigma_{n,1}(\varepsilon) + \sigma_{n,2}(\varepsilon) = 2\sigma_n(a) \), so that we have that
\[
|\sigma_{n,1}(\varepsilon)| + |\sigma_{n,2}(\varepsilon)| = |\sigma_{n,1}(\varepsilon)| + |\sigma_{n,1}(\varepsilon)|^{-1}
\geq |\sigma_{n,1}(\varepsilon) + \sigma_{n,2}(\varepsilon)| = 2|\sigma_n(a)| > 2^{2n+1} \quad \text{(by (1))}.
\]

So either \(|\sigma_{n,1}(\varepsilon)| > 2^{2n} \) or \(|\sigma_{n,1}(\varepsilon)|^{-1} = |\sigma_{n,2}(\varepsilon)| > 2^{2n} \). Similarly for \(\sigma_{n-1} \).

Notational Remark. From now on we adopt the convention that \(\sigma_{n-1,1} \) and \(\sigma_{n,1} \) are such that \(|\sigma_{n-1,1}(\varepsilon)| > 1 \) and \(|\sigma_{n,1}(\varepsilon)| > 1 \).

Remark. It is well known that if \(\varphi(n) \) is the Euler function of \(n \) then
\[
\lim_{n \to \infty} \varphi(n) = \infty
\]
and hence there is only a finite number of roots of unity such that their degrees over \(\mathbb{Q} \) is less than or equal to \(2n \). Call \(d \) the least common multiple of their orders. It is then obvious that for any root of unity \(J \in L, J^d = 1 \).

Lemma 3. Let \(K, a, \delta \) be as above. Let \(d \) be as in the last remark. Then all the solutions \((x, y) \) in \(O_K \) of the equation \(x^2 - \delta^2 y^2 = 1 \), for which there are \(x^* \) and \(y^* \) in \(O_K \) such that \(x + \delta y = (x^* + \delta y^*)^d \) and \(x^*2 - \delta^2 y^*2 = 1 \), are given by \(x = \pm x_m \) and \(y = \pm y_m \) for some \(m \in \mathbb{Z} \).

Proof. By the Dirichlet-Minkowski theorem on units (see [1]), there are \(n - 2 \) fundamental units in \(K \). Also \(L \) has no real embeddings into \(C \) and so \(L \) has \(2n/2 - 1 = n - 1 \) fundamental units. Consider the set \(S = \{ x + \delta y \mid x^2 - \delta^2 y^2 = 1, x, y \in O_K \} \). \(S \) is clearly in the kernel of the map \(N_{L/K} : O_L \{0\} \to O_K \{0\} \) considered as a multiplicative homomorphism. For any unit \(u \) of \(O_K \), \(N_{L/K}(u) = u^2 \) and hence the image of \(N_{L/K} \) has torsion-free rank at least equal to \(n - 2 \). Therefore, the torsion-free rank of \(S \) is at most \((n - 1) - (n - 2) = 1 \). Since \(\varepsilon \) is in \(S \) and \(\varepsilon \) is torsion free, rank \(S = 1 \). Hence there is a unit \(\varepsilon_0 = x^* + \delta y^* \in S \) such that every \(u \in S \) can be written in the form \(u = J \varepsilon_0^m \) where \(m \notin \mathbb{Z} \) and \(J \) is a root of unity in \(L \). In particular \(\varepsilon = J_0 \varepsilon_0^e \) for some \(e \notin \mathbb{Z}, e \neq 0 \) and a root of unity \(J_0 \in L \) (so \(J_0^d = 1 \)). Clearly we may assume that \(e > 0 \) interchanging \(\varepsilon_0 \) with \(\varepsilon_0^{-1} \) if necessary. Then \(\varepsilon_0 - \varepsilon_0^{-1} = 2\delta y^* \) and \(\varepsilon - \varepsilon^{-1} = 2\delta \), so \(\varepsilon - \varepsilon^{-1} | \varepsilon_0 - \varepsilon_0^{-1} \). So
\[
|N(2\delta)| \leq |N(\varepsilon_0 - \varepsilon_0^{-1})|, \quad \text{where } N = N_{L/Q}.
\]
We have
\[
|N(2\delta)| = 2^{2n}|N(\delta)| = 2^{n-2} \prod_{i=1}^{n-2} |\sigma_i(a) - 1|^2 = 2^{2n} |\sigma_n(a) - 1|^2 \cdot 2^{2n}
\]
since \(\sigma_n(a)^2 = 1 = \sigma_n(a^2) - 1 \). Hence
\[
|N(2\delta)| \geq 2^{2n} \cdot (1 - 1/2^{16n^2})^{n-2} \cdot |\sigma_n(a) - 1|^2 > 2^{2n} \cdot (1/2^2)^{n-2} \cdot |\sigma_n(a) - 1|^2
= 2^{2} |\sigma_n(a) - 1|^2 \geq 2^4 \cdot |\sigma_n(a) - 1|^2 \geq 2^3 |\sigma_n(a)|^2,
\]
using (*). Finally
\[
|N(2\delta)| > 2^2 \cdot |\sigma_n(a)|^2(i).
\]
Now observe that $\sigma_{n-1,1}(\varepsilon_0) = \sigma_{n-1}(x') + \sigma_{n-1,1}(\delta)\sigma_{n-1}(y')$ and $\sigma_{n-1,2}(\varepsilon_0) = \sigma_{n-1}(x') + \sigma_{n-1,2}(\delta)\sigma_{n-1}(y') = \sigma_{n-1}(x') - \sigma_{n-1,1}(\delta)\sigma_{n-1}(y')$. So $\sigma_{n-1,2}(\varepsilon_0) = \sigma_{n-1,1}(\varepsilon_0^{-1})$ and hence

$$|\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1})| \cdot |\sigma_{n-1,2}(\varepsilon_0) - \sigma_{n-1,2}(\varepsilon_0^{-1})| = |\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1})|^2.$$

Similarly for $\sigma_{n,1}(\varepsilon_0)$ and $\sigma_{n,2}(\varepsilon_0)$. Moreover,

$$(\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1}))^2 = 4(\sigma_n(\varepsilon)^2 - 1)\sigma_n(y')^2$$

and

$$(\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1}))^2 = 4(\sigma_{n-1}(\varepsilon)^2 - 1)\sigma_{n-1}(y')^2$$

and since $\sigma_n(\varepsilon)^2 = \sigma_{n-1}(\varepsilon)^2$ and $\sigma_n(y')^2 = \sigma_{n-1}(y')^2$, we get

$$(\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1}))^2 = (\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1}))^2.$$

Also since $|\sigma_{n,1}(\varepsilon_0)|^e = |\sigma_{n,1}(\varepsilon)|$ and $|\sigma_{n,1}(\varepsilon)| > 1$, we get $|\sigma_{n,1}(\varepsilon_0)| > 1$, using the convention $e > 0$. Similarly $|\sigma_{n-1,1}(\varepsilon_0)| > 1$. So we get

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| = \prod_{j=1,2}^{n} |\sigma_{i,j}(\varepsilon_0) - \sigma_{i,j}(\varepsilon_0^{-1})| \leq 2^{2n-4} \prod_{i=1}^{n} |\sigma_{i,j}(\varepsilon_0) - \sigma_{i,j}(\varepsilon_0^{-1})|$$

and finally we get

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| \leq 2^{2n-4}|\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1})|^4.$$

Now clearly we have

$$|\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1})|^2 = |\sigma_{n,1}(\varepsilon_0)|^2 + \sigma_{n,1}(\varepsilon_0)^{-2} - 2$$

$$\leq 0 + \sigma_{n,1}(\varepsilon_0)^{-2} - 2$$

$$\leq 2(|\sigma_n(\varepsilon)^2| + |\sigma_n(\varepsilon)|^{-2})$$

and so

$$|\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1})|^4 \leq 4(|\sigma_n(\varepsilon_0)|^2 + |\sigma_n(\varepsilon_0)|^{-2})^2,$$

and hence

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| \leq 2^{2n-2}(|\sigma_n(\varepsilon_0)|^2 + |\sigma_n(\varepsilon_0)|^{-2})^2.$$

If $|\varepsilon| = |\varepsilon_0|^e$ and $e > 4$ then $|\sigma_{n,1}(\varepsilon)| \geq |\sigma_{n,1}(\varepsilon_0)|^4 > 1$ and so

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| \leq 2^{2n-2}(|\sigma_{n,1}(\varepsilon_0)|^2 + |\sigma_{n,1}(\varepsilon_0)|^{-2})^2$$

$$= 2^{2n-2}(|\sigma_{n,1}(\varepsilon_0)|^4 + |\sigma_{n,1}(\varepsilon_0)|^{-4} + 2) \leq 2^{2n-1}(|\sigma_{n,1}(\varepsilon_0)|^4 + |\sigma_{n,1}(\varepsilon_0)|^{-4})$$

$$\leq 2^{2n}(|\sigma_n(\varepsilon_0)|^4 + |\sigma_n(\varepsilon_0)|^{-4})$$

$$= 2^{2n}(|\sigma_n(\varepsilon_0)|^4 + |\sigma_n(\varepsilon_0)|^{-4} + 2) \leq 2^{2n}(|\sigma_n(\varepsilon_0)|^4 + |\sigma_n(\varepsilon_0)|^{-4} + 2)$$

Combining the last inequality with (i) above gives $|\sigma_n(\varepsilon_0)| < 2^{2n}$ which contradicts Lemma 2(1). So $e \leq 3$. Therefore, if $x^2 + \delta^2 y^2 = 1$ and $x + \delta y = (x^* + \delta y^*)^6$, since for some $n \in \mathbb{Z}$, $x^* + \delta y^* = J\varepsilon_0^d$ and $J^d = 1$ then $x + \delta y = \varepsilon_0^{6n} = \varepsilon_n$ and hence $x = \pm x_n$, and $y = \pm y_n$, where $n = 6n/e$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
LEMMA 4. Assume that K,a are as above, $h,m \in \mathbb{N}$ and
\[
|\sigma_i(y_h)| \geq \frac{1}{2} \quad \text{for } i = 1,2,\ldots,n-2 \quad (\text{condition } (1)).
\]
Then
(1) $|\sigma_n(y_h)| > |\sigma_{n,1}(\epsilon)^h/4|\sigma_{n,1}(\delta)|$ and $|\sigma_{n,1}(\epsilon)| > 2^{2n}$,
(2) $y_h | y_m \Rightarrow h | m$ (the first divisibility is meant in O_K, the second in Z),
(3) $y_h^2 | y_m \Rightarrow y_h \mid m \text{ in } O_K$.

PROOF. (1) We have proved that $|\sigma_{n,1}(\epsilon)| > 2^{2n}$. It is trivial to see that from this fact the following immediately follows: $|\sigma_{n,1}(\epsilon)^h| - |\sigma_{n,1}(\epsilon)|^{-h} \geq |\sigma_{n,1}(\epsilon)|^h/\sqrt{2}$ for $h \in \mathbb{N}_0$. So
\[
|\sigma_n(y_h)| = \left|\frac{\sigma_{n,1}(\epsilon)^h - \sigma_{n,1}(\epsilon)^{-h}}{2|\sigma_{n,1}(\delta)|}\right| \geq \frac{|\sigma_{n,1}(\epsilon)|^h}{2\sqrt{2}|\sigma_{n,1}(\delta)|} \geq \frac{|\sigma_{n,1}(\epsilon)|^h}{2|\sigma_{n,1}(\delta)|}.
\]

(2) Suppose $y_h | y_m$ but $h \nmid m$. Set $m = hq + k$, with $q,k \leq N$ and $0 < k < h$. Lemma 1 yields $y_m = x_k y_h q + x_{hq} y_k$. Notice that $y_h | y_h q$, hence $y_h \mid x_{hq} y_k$. Since $x_{hq}^2 - (a^2-1)y_h^2 = 1$, the elements y_h and x_{hq} are relatively prime. Thus $y_h | y_k$ and $|N_{K/Q}(y_h)| \leq |N_{K/Q}(y_k)|$. From the Introduction we have that $\sigma_{n-1}(y_h) = \sigma_{n}(y_h)$.

Also from condition (1) and (1),
\[
|N_{K/Q}(y_h)| = |\sigma_{n-1}(y_k)| \cdot |\sigma_n(y_h)| \cdot \prod_{i=1}^{n-2} |\sigma_i(y_h)| \geq |\sigma_n(y_h)|^2 \cdot \left(\frac{1}{2}\right)^{n-2}.
\]

Now observe that, for $i \leq n-2$, $\sigma_i(x_k)^2 - (\sigma_i(a)^2 - 1) \cdot \sigma_i(y_k)^2 = 1$ and $\sigma_i(a)^2 < 1$. So $\sigma_i(y_k) < 1$ for $i \leq n-2$. Therefore,
\[
|N_{K/Q}(y_k)| = |\sigma_{n-1}(y_k)| \cdot |\sigma_n(y_k)| \cdot \prod_{i=1}^{n-2} |\sigma_i(y_k)| < |\sigma_n(y_k)|^2.
\]

Hence
\[
\left(\frac{1}{2}\right)^{n-2} \frac{|\sigma_{n,1}(\epsilon)^{2h}/4|\sigma_{n,1}(\delta)|^2}{|\sigma_{n,1}(\delta)|^2} < \frac{|\sigma_{n,1}(\epsilon)|^{2k}}{|\sigma_{n,1}(\delta)|^2}.
\]

i.e. $|\sigma_{n,1}(\epsilon)|^{2k+2k} < 2^n$ which contradicts (1) since $h - k \geq 1$. Hence $h \mid m$.

(3) is obvious since $(e^{h} - e^{-h})/(e^{h} - e^{-h}) \equiv 1 \cdot u \mod(e^{h} - e^{-h})$ where u is a unit and hence if $y_h^2 \mid y_m$, by (2) $h \mid m$, i.e. $m = lh$ for some $l \in \mathbb{N}$, and so $y_m/y_h \equiv 0 \mod y_h$, which means that $m/h \equiv 0 \mod y_h$, i.e. $m \equiv 0 \mod y_h$.

LEMMA 5. If K,a are as above and $k,j \in \mathbb{N}$, $m \in \mathbb{N}_0$ and $|\sigma_i(x_m)| \geq \frac{1}{2}$ for $i = 1,\ldots,n-2$, then if $x_k \equiv \pm x_j \mod x_m$ we get that $k \equiv \pm j \mod m$ (the two \pm do not have to correspond).

PROOF. Set $k = 2mq \pm k_0$, $j = 2mh \pm j_0$ with $q,h,k_0,j_0 \in \mathbb{N}$ and $k_0 \leq m$, $j_0 \leq m$. Lemma 1(9) implies $x_k \equiv \pm x_{k_0} \mod x_m$, $x_j \equiv \pm x_{j_0} \mod x_m$. Hence, it is
sufficient to prove the lemma for \(k \leq m, j \leq m \). Thus suppose \(x_k \equiv \pm x_j \mod x_m \), \(k \leq m \) and \(j \leq m \). We shall prove that \(x_k = \pm x_j \). Assume \(x_k \neq \pm x_j \); then \(|N_{K/Q}(x_m)| \leq |N_{K/Q}(x_k \pm x_j)| \). We may assume without loss of generality that \(|\sigma_n(x_k)| \geq |\sigma_n(x_j)| \). Then by the hypothesis of the lemma,

\[
|N_{K/Q}(x_m)| = |\sigma_n(x_m)|^2 \cdot \prod_{i \leq n-2} |\sigma_i(x_m)| \geq |\sigma_n(x_m)|^2 \cdot \left(\frac{1}{2}\right)^{n-2}
\]

\[
= \left(\frac{1}{2}\right)^{n-2} \cdot \frac{|\sigma_{n,1}(\varepsilon)^m + |\sigma_{n,1}(\varepsilon)|^{-m}|^2}{4} \geq \left(\frac{1}{2}\right)^{n} \left(|\sigma_{n,1}(\varepsilon)|^m - |\sigma_{n,1}(\varepsilon)|^{-m}|\right)^2
\]

\[
> \left(\frac{1}{2}\right)^{n+1}|\sigma_{n,1}(\varepsilon)|^{2m}.
\]

The last inequality holds by Lemma 4(1). Also

\[
|N_{K/Q}(x_k \pm x_j)| \leq \left(|\sigma_n(x_k)| + |\sigma_n(x_j)|\right) \cdot \prod_{i \leq n-2} \left(|\sigma_i(x_k)| + |\sigma_i(x_j)|\right)
\]

\[
< \left(2|\sigma_n(x_k)|\right)^2 \cdot 2^{n-2} = |\sigma_n(x_k)|^2 \cdot 2^n \leq |\sigma_n(\varepsilon)|^{2k} \cdot 2^n.
\]

So \(|\sigma_{n,1}(\varepsilon)|^{2m-2k} < 2^{n+1} \), i.e. \(|\sigma_{n,1}(\varepsilon)|^{m-k} < 2^{n+1} < 2^{2n} \) which contradicts Lemma 4(1), if \(m \neq k \). So we get \(x_m = x_k \) and hence \(x_m | x_j \). So we conclude that \(|N_{K/Q}(x_m)| \leq |N_{K/Q}(x_j)| \). As we proved above,

\[
|N_{K/Q}(x_m)| \geq \left(\frac{1}{2}\right)^{n+1}|\sigma_{n,1}(\varepsilon)|^{2m}.
\]

Also

\[
|N_{K/Q}(x_j)| = \prod_{i \leq n-2} |\sigma_i(x_j)| \cdot |\sigma_n(x_j)|^2 \leq |\sigma_n(x_j)|^2
\]

\[
= \frac{|\sigma_{n,1}(\varepsilon)^j + \sigma_{n,1}(\varepsilon)^{-j}|^2}{4} \leq |\sigma_{n,1}(\varepsilon)|^{2j}.
\]

Hence \(|\sigma_{n,1}(\varepsilon)|^{2m-2j} \leq 2^n \), which by Lemma 4(1) can happen only if \(2m-2j = 0 \), i.e. \(m = j \). So \(x_k = \pm x_j \). If \(x_k = x_j \), then \(\varepsilon^k + \varepsilon^{-k} = \varepsilon^j + \varepsilon^{-j} \), i.e. \(\varepsilon^k - \varepsilon^j = \varepsilon^{-j} - \varepsilon^{-k} \), i.e. \(\varepsilon^{-k}(1 - \varepsilon^{-k}) = \varepsilon^j(\varepsilon^{-j} - 1) \), i.e. \((\varepsilon^{k+j} + 1)(\varepsilon^{-k-j} - 1) = 0 \), i.e. \(k = \pm j \). Similarly, if \(x_k = -x_j \), \(\varepsilon^k + \varepsilon^{-k} = -\varepsilon^j - \varepsilon^{-j} \), i.e. \((\varepsilon^k + \varepsilon^j)(1 + \varepsilon^{-k-j}) = 0 \), i.e. \(k = \pm j \).

Lemma 6. Suppose that \(K \) and \(a \) are as above with the additional hypothesis that \(\sigma_{n,1}(\varepsilon) \neq \sigma_{n-1,1}(\varepsilon) \) is not a root of unity. Let \(k \in \mathbb{N}_0 \). Then there exist multiples \(m, h \) of \(k \) such that \(|\sigma_i(x_m)| > \frac{1}{2} \) for \(i = 1, 2, \ldots, n-2 \) and \(|\sigma_i(y_h)| > \frac{1}{2} \) for \(i = 1, 2, \ldots, n-2 \).

Proof. We shall prove that if

\[
(1) \quad \sigma_{1,1}(\varepsilon)^{k_1} \sigma_{2,1}(\varepsilon)^{k_2} \cdots \sigma_{n-1,1}(\varepsilon)^{k_{n-2}} = 1,
\]

then \(k_1 = k_2 = \cdots = k_{n-2} = 0 \). Let \(K_1 \) be the least normal extension of \(K \) and \(L_1 \) the least normal extension of \(L \), so \(K_1 \subseteq L_1 \). It is enough to prove that for each \(\sigma_i, i \leq n-2 \), there is an automorphism \(\tau \) of \(K_1 \) such that \(\tau \sigma_i = \sigma_{n-1} \) and \(\tau \sigma_{n-1} = \sigma_i \) and for all \(j \neq i, n-1 \), \(\tau \sigma_j = \sigma_j \), where by \(\tau \sigma_j \) we mean the restriction of \(\tau \) on \(\sigma_j(K) \) composition \(\sigma_j \). This is enough because for each \(i \leq n-2 \), applying the corresponding \(\tau \) extended to \(L_1 \) on both sides of (1) and taking absolute values, we get \(|\sigma_{n,j}(\varepsilon)^{k_i}| = 1 \) where \(j = 1 \) or 2; hence \(k_i = 0 \) and hence the result follows by the theorem of Kronecker (see [5]).
Notice that every automorphism of K_1 determines a permutation of the embeddings of K and conversely every permutation of these embeddings determines at most one automorphism of K_1. So when we write $\tau = (\sigma_i, \sigma_j)$ we mean that τ is the unique automorphism of K_1 which transposes σ_i and σ_j. Since $\sigma_{n-1}(K) \neq \sigma_n(K)$, the degree of the extension $\sigma_{n-1}(K)\sigma_n(K)$ over $\sigma_n(K)$ is at least 2, so the identity embedding of $\sigma_n(K)$ into C extends to at least one nonidentity embedding of $\sigma_{n-1}(K)\sigma_n(K)$ into C. This embedding extends to an automorphism τ_1 of K_1. Since τ_1 is not the identity on $\sigma_{n-1}(K)\sigma_n(K)$ and is the identity on $\sigma_n(K)$, it can not be the identity on $\sigma_{n-1}(K)$. So, since $\tau_1\sigma_{n-1} \neq \sigma_{n-1}$ and $\tau_1\sigma_{n-1} \neq \sigma_n$, $\tau_1\sigma_{n-1}$ is a real embedding of K_1 say $\tau_1\sigma_{n-1} = \sigma_{t_0}$. Let τ_0 be the automorphism of K_1 such that $\tau_0(\varphi) = \varphi$. Then $\tau_1\tau_0\tau_1^{-1} = (\sigma_{t_0}, \sigma_n)$, since τ_0 is a transposition (σ_{n-1}, σ_n).

Now assume that $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$. Applying $\tau_1\tau_0\tau_1^{-1}$ to both sides we find $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{n-2}(K)$ which is impossible since $\sigma_{n-1}(K)$ is nonreal and the right-hand side of the relation is real. So

$$\sigma_{n-1}(K) \not\subset \sigma_1(K) \cdots \sigma_{n-2}(K)\sigma_n(K).$$

Let $i \leq n - 2$. Consider the extension

$$\sigma_{n-1}(K)\sigma_1(K) \cdots \sigma_{i-1}(K)\sigma_i+1(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$$

over $\sigma_1(K) \cdots \sigma_{i-1}(K)\sigma_{i+1}(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$. This extension may not be of degree 1, otherwise $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{i-1}(K)\sigma_{i+1}(K) \cdots \sigma_{n-2}(K)\sigma_n(K)$, contrary to what we proved. So the identity embedding in C of the ground field extends to at least one nonidentity embedding of the extension field in C. Let τ be an extension of this embedding to an automorphism of K_1. Clearly, since $\tau\sigma_{n-1} \neq \sigma_{n-1}$ and $\tau\sigma_j = \sigma_j$ for $j \neq i, n - 1$, we must have $\tau\sigma_{n-1} = \sigma_i$ and hence $\tau = (\sigma_i, \sigma_{n-1})$ and this is what we should prove in order to conclude the lemma.

LEMMA 7. Suppose that K and α are as above and that $|\sigma_i(\alpha)| < 1/28^n$ for $i = 1, 2, \ldots, n - 2$. Let $m \in \mathbb{N}_0$. Then there exists an element b in O_K such that:

1. $b \equiv 1 \mod \gamma_{m}(\alpha)$;
2. $b \equiv a \mod \gamma_{m}(\alpha)$;
3. b satisfies $(*)$.

PROOF. Set $b = x_{2s} + a(1 - x_m^2)$ with $s \in \mathbb{N}_0$ to be determined. Since $x_m^2 - (a^2 - 1)y_m^2 = 1$, we have $x_m^2 \equiv 1 \mod y_m$; hence (1) holds. Also (2) holds obviously. Since $|\sigma_i(x_m)| < 1$ for $i = 1, 2, \ldots, n - 2$ and $|\sigma_n(x_m)| \cdot |\sigma_{n-1}(x_m)| = |\sigma_n(x_m)|^2 > 1$, we can choose s large enough so that $|\sigma_i(x_m)| < 1/28^n$ for $i = 1, 2, \ldots, n - 2$. Then for $i = 1, 2, \ldots, n - 2$ the following holds:

$$|\sigma_i(b)| \leq |\sigma_i(x_m)|^2 + |\sigma_i(\alpha)| \cdot |1 - \sigma_i(x_m)|^2 < |\sigma_i(x_m)|^2 + 1/28^n < 2/28^n < 1/24^n.$$

LEMMA 8. Let K be any number field of degree n over \mathbb{Q}, and let $\sigma_1, \sigma_2, \ldots, \sigma_n$ be the embeddings of K into C. Let $\xi, \alpha \in O_K$ and $\alpha \neq 0$. If $2^{n+1}\xi^n(\xi + 1)^n \cdots (\xi + n - 1)^n | \alpha$, then $|\sigma_i(\xi)| < 1/2 |N(\alpha)|^{1/n}$ for all $i = 1, 2, \ldots, n$.

PROOF. See [3].
Main Lemma. Let K be as above and $a \in O_K$ satisfying
$|\sigma_i(a)| < 1/2^{8^n}$ for $i = 1, 2, \ldots, n - 2$. (**)
and let d be defined as in the Remark before Lemma 3. Define the subset S of O_K by
$\xi \in S \iff \xi \in O_K \wedge \exists x, y, w, z, u, v, s, t, x', y', w', z', u', v', s', t', b \in O_K$:

$\begin{align*}
\text{(1)} & \quad x'^2 - (a^2 - 1)y'^2 = 1, \\
\text{(2)} & \quad w'^2 - (a^2 - 1)z'^2 = 1, \\
\text{(3)} & \quad u'^2 - (a^2 - 1)v'^2 = 1, \\
\text{(4)} & \quad s'^2 - (b^2 - 1)t'^2 = 1, \\
\text{(1*)} & \quad x + \delta(a)y = (x' + \delta(a)y')^{6d}, \\
\text{(2*)} & \quad w + \delta(a)z = (w' + \delta(a)z')^{6d}, \\
\text{(3*)} & \quad u + \delta(a)v = (u' + \delta(a)v')^{6d}, \\
\text{(4*)} & \quad s + \delta(b)t = (s' + \delta(b)t')^{6d}, \\
\text{(5)} & \quad |\sigma_i(b)| < 1/2^{4n}, \quad i = 1, 2, \ldots, n - 2, \\
\text{(6)} & \quad |\sigma_i(z)| \geq \frac{1}{2}, \quad i = 1, 2, \ldots, n - 2, \\
\text{(7)} & \quad |\sigma_i(u)| \geq \frac{1}{2}, \quad i = 1, 2, \ldots, n - 2, \\
\text{(8)} & \quad v \neq 0, \\
\text{(9)} & \quad z^2 \mid v, \\
\text{(10)} & \quad b \equiv 1 \mod z, \\
\text{(11)} & \quad b \equiv a \mod u, \\
\text{(12)} & \quad s \equiv x \mod u, \\
\text{(13)} & \quad t \equiv \xi \mod z, \\
\text{(14)} & \quad 2^{n+1} \xi^n(\xi + 1)^n \cdots (\xi + n - 1)^n x^n(x + 1)^n \cdots (x + n - 1)^n \mid z.
\end{align*}$

Then $N_0 \subset S \subset \mathbb{Z}$.

Proof. (i) Suppose there are $x, y, \ldots, b \in O_K$ satisfying (1)–(14). We shall prove that $\xi \in \mathbb{Z}$. From (**i) and (5) it follows that a and b satisfy (*). Hence from (1)–(4), (1*)–(4*) and Lemma 3 it follows that there are $k, h, m, j \in \mathbb{N}$ such that:

$\begin{align*}
x & = \pm x_0(a), \quad y = \pm y_0(a), \\
w & = \pm x_h(a), \quad z = \pm y_h(a), \\
u & = \pm x_m(a), \quad v = \pm y_m(a), \\
s & = \pm x_j(b), \quad t = \pm y_j(b).
\end{align*}$

So (6)–(13) become

$\begin{align*}
\text{(6')} & \quad |\sigma_i(y_h(a))| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \ldots, n - 2, \\
\text{(7')} & \quad |\sigma_i(x_m(a))| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \ldots, n - 2, \\
\text{(8')} & \quad y_m(a) \neq 0, \\
\text{(9')} & \quad y^2_h(a) \mid y_m(a), \\
\text{(10')} & \quad b \equiv 1 \mod y_h(a), \\
\text{(11')} & \quad b \equiv a \mod x_m(a),
\end{align*}$
$(12') \quad x_j(b) \equiv \pm x_k(a) \mod x_m(a),$

$(13') \quad y_j(b) \equiv \pm \xi \mod y_h(a).$

We have

\[y_j(b) \equiv j \mod (b - 1) \quad \text{(Lemma 1(7))}, \]

\[y_j(b) \equiv j \mod y_h(a) \quad \text{(by (10'))}, \]

$(15) \quad x_j(b) \equiv x_j(a) \mod x_m(a) \quad \text{(by (11') and Lemma 1(8))},$

\[x_j(a) \equiv \pm x_k(a) \mod x_m(a) \quad \text{(by (12'))}, \]

$(16) \quad k \equiv \pm j \mod m \quad \text{(by (7'), (8') and Lemma 5)},$

\[y_h(a) \mid m \quad \text{(by (6'), (9') and Lemma 4)}, \]

\[k \equiv \pm j \mod y_h(a) \quad \text{(by (16))}, \]

$(17) \quad k \equiv \pm \xi \mod z \quad \text{(by (15))},$

\[\sigma_i(\xi) < \frac{1}{2}|N(z)|^{1/n} \quad \text{for } i = 1, 2, \ldots, n \quad \text{(by (14) and Lemma 8)}, \]

\[k < |\sigma_n(x_k(a))| < \frac{1}{2}|N(z)|^{1/n} \quad \text{(by (14) and Lemma 8)}, \]

\[|\sigma_i(k \pm \xi)| < |N(z)|^{1/n} \quad \text{for } i = 1, 2, \ldots, n. \]

So $|N(k + \xi)| < |N(z)|$ and so $k = \pm \xi$ (by (17)).

(ii) Conversely, suppose $\xi \in \mathbb{N}_0$. We shall prove that there are $x, y, \ldots, b \in O_K$ satisfying $(1)-(14)$. Set $k = \xi \in \mathbb{N}_0$, $x' = x_k(a)$ and $y' = y_k(a)$; then (1) and $(1*)$ are satisfied. By Lemmas 1(10), (4) and 6 there exists an $h \in \mathbb{N}_0$ such that the left-hand side of (14) divides $y_h(a)$ and $|\sigma_i(y_h(a))| > \frac{1}{2}$ for $i = 1, 2, \ldots, n - 2$. Set $w' = x_h(a)$ and $z = y_h(a)$, then (2), (6) and (14) are satisfied. Again by Lemmas 1(10), (4) and 6, there exists an $m \in \mathbb{N}_0$ such that $y_h^2(a) | y_m(a)$ and $|\sigma_i(x_m(a))| > \frac{1}{2}$ for $i = 1, 2, \ldots, n - 2$. Set $w' = x_m(a)$ and $v' = y_m(a)$; then (3), $(3*)$ and (7)–(9) are satisfied. From Lemma 7 it follows that there exists $b \in O_K$ satisfying (10), (11) and (5). Set $s' = x_k(b)$ and $t' = y_k(b)$; then (4) is satisfied. Since Lemma 1(8) and (11) imply (12) and Lemma 1(7) and (10) imply (13). Thus all conditions are satisfied and $\xi \in S$.

Lemma 9. Let K be any number field.

(i) If R_1 and R_2 are diophantine relations over O_K, then $R_1 \lor R_2$ and $R_1 \land R_2$ are also diophantine over O_K.

(ii) The relation $x \neq 0$ is diophantine over O_K.

Proof. See [3].

Lemma 10. Let K be any number field, and σ an embedding of K into \mathbb{R}. Then the relation $\sigma(x) \geq 0$ is diophantine over O_K.

Proof. See [3].

Theorem. Let K be a number field with exactly two nonreal embeddings into \mathbb{C}, of degree $n \geq 3$ over \mathbb{Q}. Then \mathbb{Z} is diophantine over O_K.

Proof. By Minkowski’s lemma on convex bodies it follows that there is an a satisfying $(**) \text{ of the Main Lemma}$. By Lemma 10 the relations $(5)–(7)$ are
diophantine over O_K and clearly the relations (1*)–(4*) can be written so that $\delta(a)$ and $\delta(b)$ do not occur, i.e. (1*)–(4*) are diophantine over O_K. So the set S of the Main Lemma is diophantine over L_K and hence \mathbb{Z} is also diophantine over O_K.

REFERENCES

Computer Technology Institute, Patras 26110, Greece

Current address: Department of Mathematics, Florida International University, University Park, Miami, Florida 33199