Pointwise estimates for the relative fundamental solution of $\overline \partial _ b$
HTML articles powered by AMS MathViewer
- by Michael Christ
- Proc. Amer. Math. Soc. 104 (1988), 787-792
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929407-5
- PDF | Request permission
Abstract:
Consider a compact pseudoconvex CR manifold of dimension 3 and finite type, on which the operator ${\bar \partial _b}$ has closed range in ${L^2}$. The relative fundamental solution of ${\bar \partial _b}$ is the distribution-kernel for that operator which inverts ${\bar \partial _b}$ modulo its kernel and cokernel. We derive pointwise bounds on this fundamental solution and its derivatives.References
- Michael Christ, Regularity properties of the $\overline \partial _b$ equation on weakly pseudoconvex CR manifolds of dimension $3$, J. Amer. Math. Soc. 1 (1988), no. 3, 587–646. MR 928903, DOI 10.1090/S0894-0347-1988-0928903-2
- Charles L. Fefferman and Joseph J. Kohn, Hölder estimates on domains of complex dimension two and on three-dimensional CR manifolds, Adv. in Math. 69 (1988), no. 2, 223–303. MR 946264, DOI 10.1016/0001-8708(88)90002-3
- J. J. Kohn, Estimates for $\bar \partial _b$ on pseudoconvex CR manifolds, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 207–217. MR 812292, DOI 10.1090/pspum/043/812292
- Matei Machedon, Szegő kernels on pseudoconvex domains with one degenerate eigenvalue, Ann. of Math. (2) 128 (1988), no. 3, 619–640. MR 970613, DOI 10.2307/1971438
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- Antonio Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), no. 1, 143–160. MR 762360, DOI 10.1007/BF01388721
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 787-792
- MSC: Primary 35N15; Secondary 32F20, 32F30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929407-5
- MathSciNet review: 929407