A new approach to the multipliers of Pedersen’s ideal
HTML articles powered by AMS MathViewer
- by N. Christopher Phillips
- Proc. Amer. Math. Soc. 104 (1988), 861-867
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929419-1
- PDF | Request permission
Abstract:
We obtain a simple description of the multiplier algebra $\Gamma \left ( {{K_A}} \right )$ of Pedersen’s ideal ${K_A}$ of a ${C^ * }$-algebra $A$ as a pro-${C^ * }$-algebra (inverse limit of ${C^ * }$-algebras). This description enables us to derive a number of the results obtained by Lazar and Taylor in their study of $\Gamma \left ( {{K_A}} \right )$ directly from corresponding facts about pro-${C^ * }$-algebras, and to give simplified proofs of several other results.References
- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama, Multipliers of $C^*$-algebras, J. Functional Analysis 13 (1973), 277–301. MR 0470685, DOI 10.1016/0022-1236(73)90036-0
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- A. J. Lazar and D. C. Taylor, Multipliers of Pedersen’s ideal, Mem. Amer. Math. Soc. 5 (1976), no. 169, iii+111. MR 412823, DOI 10.1090/memo/0169
- Gert Kjaergȧrd Pedersen, Measure theory for $C^{\ast }$ algebras, Math. Scand. 19 (1966), 131–145. MR 212582, DOI 10.7146/math.scand.a-10802
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- N. Christopher Phillips, Inverse limits of $C^*$-algebras, J. Operator Theory 19 (1988), no. 1, 159–195. MR 950831 J. Mack, The spectrum of a PCS-algebra, preprint.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 861-867
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929419-1
- MathSciNet review: 929419