ON COMPLEMENTED COPIES OF c_0 IN L^p_X, $1 \leq p < \infty$

G. EMMANUELE

(Communicated by William J. Davis)

Let (S, Σ, μ) be a not purely atomic measure space and X be a Banach space. In this note we want to show that if X contains a copy of c_0 then the usual Banach space of the Lebesgue-Bochner integrable functions L^p_X, $1 \leq p < \infty$, contains a complemented copy of c_0. Our result is similar in spirit to one obtained in [1] by Cembranos concerning the Banach space $C_X(K)$; in passing we observe that the Cembranos result has been extended in [3] to the case of ε-tensor products and then in [2] to the case of the Banach space of compact weak*-weak continuous operators.

In order to prove our theorem we need the definition of limited sets. A (bounded) subset M of a Banach space X is said to be limited if for each weak* null sequence $(x_n^*) \subset X^*$ we have $\lim_{n \to \infty} \sup_{x \in M} |x_n^*(x)| = 0$. Further we use the following result obtained in [2].

LEMMA. If X contains an unlimited sequence (x_n) that is equivalent to the unit basis of c_0, then X contains a complemented copy of c_0.

Now, we are ready to show our theorem.

THEOREM. Assume X contains a copy of c_0. Then L^p_X, $1 \leq p < \infty$, contains a complemented copy of c_0.

PROOF. We shall construct a sequence of functions in L^p_X which is equivalent to the unit basis of c_0 and is not limited in L^p_X, so by virtue of the Lemma we will be done. Let (x_n) be a sequence in X equivalent to the unit basis of c_0 and (x_n^*) be a bounded sequence in X^* such that $x_m^*(x_n) = \delta_{mn}$. It suffices to consider the case of $[0, 1]$ with Lebesgue measure. We consider Rademacher functions r_n and define a sequence (f_n) in L^p_X by putting $f_n = r_n x_n$ and a sequence in $(L^p_X)^*$ by putting $f_n^* = r_n x_n^*$. First of all we show that (f_n) is a sequence equivalent to the unit basis of c_0. Since (x_n) is a copy of the unit basis of c_0, there are $h_1, h_2 \in \mathbb{R}^+$ such that, for all finite sequences $(a_i)_{i=1}^s$ of real numbers, we have

$$h_1 \max_{1 \leq i \leq s} |a_i| \leq \left\| \sum_{i=1}^s a_i x_i \right\|_X \leq h_2 \max_{1 \leq i \leq s} |a_i|.$$

Since $|r_i(t)| = 1$ on $[0, 1]$ for all $i \in N$, we have

$$h_1 \max_{1 \leq i \leq s} |a_i| \leq \left\| \sum_{i=1}^s a_i r_i(t) x_i \right\|_X \leq h_2 \max_{1 \leq i \leq s} |a_i|, \quad t \in [0, 1].$$

Received by the editors February 14, 1988.

Key words and phrases. Lebesgue-Bochner function spaces, complemented copies of c_0, limited sets.
This easily gives that
\[h_1 \max_{1 \leq i \leq s} |a_i| \leq \left\| \sum_{i=1}^{s} a_i f_i \right\|_{L^p_X} \leq h_2 \max_{1 \leq i \leq s} |a_i|, \]
i.e. \((f_n)\) is equivalent to the unit basis of \(c_0\). Now, we observe that
\[f_n^*(f_n) = \int_{[0,1]} x_n^*(-)(t) r_n^2(t) \, dm = 1 \quad \text{for all } n \in \mathbb{N}. \]
So it remains only to prove that \(f_n^* \rightharpoonup 0\). To this purpose take \(h \in L^p_X\) and observe that
\[|f_n^*(h)| = \left| \int_{[0,1]} x_n^*(-)(t) r_n(t) \, dm \right| \leq \|x_n^*\| \left\| \int_{[0,1]} h(t) r_n(t) \, dm \right\| \quad \text{for all } n \in \mathbb{N}. \]
Since \((x_n^*)\) is bounded and moreover \(\lim_n \left\| \int_{[0,1]} h(t) r_n(t) \, dm \right\| = 0\), we get \(\lim_n f_n^*(h) = 0\). Arbitrariness of \(h\) in \(L^p_X\) gives that \(f_n^* \rightharpoonup 0\). Our proof is complete.

The above Theorem has the following Corollary.

Corollary. Let \(X\) contain a copy of \(c_0\). Then \(L^p_X\), \(1 \leq p < \infty\), is neither a Grothendieck space nor a dual space.

Finally, we want to thank Joe Diestel for suggesting a simplification of our first proof.

References

2. G. Emmanuele, A note on Banach spaces containing complemented copies of \(c_0\).

Department of Mathematics, University of Catania, Viale A. Doria 6, Catania 95125, Italy

Current address: Department of Mathematics, Kent State University, Kent, Ohio 44242

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use