Endomorphisms of an extremal algebra
HTML articles powered by AMS MathViewer
- by Herbert Kamowitz and Dennis Wortman
- Proc. Amer. Math. Soc. 104 (1988), 852-858
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931733-0
- PDF | Request permission
Abstract:
Let $Ea[ - 1,1]$ denote the extremal algebra on $[ - 1,1]$ as defined in Bonsall and Duncan, Numerical ranges. II. We show that every nonzero endomorphism $T$ on $Ea[ - 1,1]$ has the form $Tf(x) \to f(Ax + B)$ where $A$ and $B$ are real and $|A| + |B| \leq 1$. Further, the endomorphism $T$ is an automorphism if, and only if, $B = 0$ and $A = 1$ or $-1$, while $T$ is a nonzero compact endomorphism if, and only if, $T:f(x) \to f(B)$ for some $B$ in $[ - 1,1]$. Also included in this note are several results related to compact endomorphisms of regular commutative semisimple Banach algebras.References
- F. F. Bonsall and J. Duncan, Numerical ranges. II, London Mathematical Society Lecture Note Series, No. 10, Cambridge University Press, New York-London, 1973. MR 0442682
- Yngve Domar, On the Banach algebra $A(G)$ for smooth sets $\Gamma \subset R^{n}$, Comment. Math. Helv. 52 (1977), no. 3, 357–371. MR 477603, DOI 10.1007/BF02567374
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- Allan M. Sinclair, The Banach algebra generated by a hermitian operator, Proc. London Math. Soc. (3) 24 (1972), 681–691. MR 305068, DOI 10.1112/plms/s3-24.4.681
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 852-858
- MSC: Primary 47B38; Secondary 39B70, 46J99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931733-0
- MathSciNet review: 931733