The existence of periodic solutions to nonautonomous differential inclusions
HTML articles powered by AMS MathViewer
- by Jack W. Macki, Paolo Nistri and Pietro Zecca
- Proc. Amer. Math. Soc. 104 (1988), 840-844
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931741-X
- PDF | Request permission
Abstract:
For an $m$-dimensional differential inclusion of the form \[ \dot x \in A(t)x(t) + F[t,x(t)],\] with $A$ and $F$ $T$-periodic in $t$, we prove the existence of a nonconstant periodic solution. Our hypotheses require $m$ to be odd, and require $F$ to have different growth behavior for $\left | x \right |$ small and $\left | x \right |$ large (often the case in applications). The idea is to guarantee that the topological degree associated with the system has different values on two distinct neighborhoods of the origin.References
- Arrigo Cellina and Andrzej Lasota, A new approach to the definition of topological degree for multi-valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 47 (1969), 434–440 (1970) (English, with Italian summary). MR 276937
- M. Furi, P. Nistri, M. P. Pera, and P. L. Zezza, Topological methods for the global controllability of nonlinear systems, J. Optim. Theory Appl. 45 (1985), no. 2, 231–256. MR 778146, DOI 10.1007/BF00939979
- M. A. Krasnosel′skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 263, Springer-Verlag, Berlin, 1984. Translated from the Russian by Christian C. Fenske. MR 736839, DOI 10.1007/978-3-642-69409-7 J. M. Lasry and R. Robert, Analyse nonlineaire multivoque, Cahiers de Math. de la Decision #7611, Equipe de Recherche de Math. de la Decision, Equipe de Recherche Associe de CNRS #249, Ceremade.
- Noel G. Lloyd, A survey of degree theory: basis and development, IEEE Trans. Circuits and Systems 30 (1983), no. 8, 607–616. MR 715516, DOI 10.1109/TCS.1983.1085396
- Paolo Nistri, Periodic control problems for a class of nonlinear periodic differential systems, Nonlinear Anal. 7 (1983), no. 1, 79–90. MR 687032, DOI 10.1016/0362-546X(83)90105-0 —, Nonlinear boundary value control problems, Proc. 25th IEEE Conf. on Decision and Control, Athens, Dec. 1986, pp. 600-601.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 840-844
- MSC: Primary 34A60; Secondary 34A10, 34A25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931741-X
- MathSciNet review: 931741