A GENERALIZED CONVERSE MEASURABILITY THEOREM
K. S. CHANG AND K. S. RYU
(Communicated by R. Daniel Mauldin)

ABSTRACT. It has long been known that measurability questions in Wiener space and Yeh-Wiener space are often rather delicate. Some converse measurability theorems in Wiener and Yeh-Wiener spaces were proved by Köehler, Skoug, and the first author.

In this paper, we establish a generalized converse measurability theorem by which the above measurability theorems are proved as corollaries.

1. Introduction. Let $C_1[a,b]$ denote the Wiener space of functions of one variable i.e., $C_1[a,b] = \{x(\cdot)|x(a) = 0 \text{ and } x(s) \text{ is continuous on } [a,b]\}$. Let $R = \{(s,t)|a < s < b, \alpha < t < \beta\}$ and let $C_2[R]$ be the Yeh-Wiener space (or 2-parameter Wiener space), i.e., $C_2[R] = \{x(\cdot, \cdot)|x(a,t) = x(s,a) = 0, x(s,t) \text{ is continuous on } R\}$. Let ν be Wiener measure on $C_1[a,b]$ and let λ be Yeh-Wiener measure on $C_2[R]$.

For a discussion of Yeh-Wiener measure see [1, 5, and 6]. Note that Wiener space and Yeh-Wiener space are separable Banach spaces with respect to the supremum norm.

Let $a = t_0 < t_1 < \cdots < t_n = b$ be a subdivision of $[a,b]$. Let E be any subset of Euclidean space \mathbb{R}^n and define $J : C_1[a,b] \to \mathbb{R}^n$ by

$$J(x) = (x(t_1), x(t_2), \ldots, x(t_n)).$$

J is continuous on $C_1[a,b]$ with respect to the uniform topology. By the definition of Wiener measure, if E is Lebesgue measurable then $J^{-1}(E)$ is Wiener measurable and

$$\nu(J^{-1}E) = \int_E g(\vec{\xi}) \, d\gamma(\vec{\xi})$$

where γ is Lebesgue measure on \mathbb{R}^n,

$$g(\vec{\xi}) = [(2\pi)^n (t_1 - a)(t_2 - t_1) \cdots (t_n - t_{n-1})]^{-1/2} \times \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (\xi_i - \xi_{i-1})^2 / (t_i - t_{i-1})\right\} > 0,$$

and $\vec{\xi} = (\xi_1, \xi_2, \ldots, \xi_n) \in \mathbb{R}^n$.

In an unpublished result Köehler established the converse, i.e., if $J^{-1}(E)$ is Wiener measurable then E is Lebesgue measurable. In [5], Skoug extended Köeh-
ler's result to Yeh-Wiener space and established the converse of the one line theorem in [1]. In [2], the first author extended Skoug's result to the n-parallel lines theorem in [1]. Later the proof of the converse of the n-parallel lines theorem was simplified [3].

In this paper, we establish a generalized converse measurability theorem which has the above converse measurability theorems as corollaries. The techniques used in this paper are quite different from the techniques used in [2, 3, and 5].

2. A generalized converse measurability theorem. A probability measure P on a σ-algebra \mathcal{S} containing the Borel sets in a topological space is called tight if for any $\varepsilon > 0$ and for any E in \mathcal{S} there exists a compact set $K \subset E$ such that $P(F \setminus K) < \varepsilon$. It is known that any probability measure on the Borel class of a complete separable metric space is tight [4].

Let P be a tight measure on $\mathcal{B}(S)$ and let m be a measure on $\mathcal{B}(T)$ where $\mathcal{B}(S)$ and $\mathcal{B}(T)$ are the Borel classes of topological spaces S and T, respectively. Let $(S, \mathcal{B}(S), P)$ and $(T, \mathcal{B}(T), m)$ be the completions of $(S, \mathcal{B}(S), P)$ and $(T, \mathcal{B}(T), m)$, respectively. It is easy to see that P is tight on $\mathcal{B}(S)$.

Let $J: S \to T$ be continuous and let $\mathcal{U} = \{ E \subset T: J^{-1}(E) \text{ is } P\text{-measurable} \}$. Define a set function μ on \mathcal{U} by $\mu(E) = P(J^{-1}(E))$ where $E \in \mathcal{U}$. \mathcal{U} is a σ-algebra which contains the Borel sets in T as is easily checked and (T, \mathcal{U}, μ) is a complete tight measure space. To see that μ is tight on \mathcal{U}, let E be μ-measurable. Then for each positive integer n, there exists a compact subset K_n of $J^{-1}(E)$ such that $P(J^{-1}(E) \setminus K_n) < 1/n$. Put $C_n = \bigcup_{k=1}^{n} K_k$. Then $P(J^{-1}(E) \setminus C_n) < 1/n$. Since C_n is compact, $J(C_n)$ is compact and

$$\mu(E \setminus J(C_n)) = P(J^{-1}(E \setminus J(C_n))) \leq P(J^{-1}(E) \setminus C_n) < 1/n.$$

Hence μ is tight on \mathcal{U}.

Lemma 2.1. $\mathcal{U} = \mathcal{B}(T)$ under the following assumption: N is an m-null set if and only if N is a μ-null set.

Proof. It is easy to see that $\mathcal{B}(T) \subset \mathcal{U}$. To show that $\mathcal{U} \subset \mathcal{B}(T)$, let $E \in \mathcal{U}$. Since μ is tight, there exists a compact set K_n such that $K_n \subset E$ and $\mu(E \setminus K_n) < 1/n$ for each $n = 1, 2, \ldots$. Let $K = \bigcup_{n=1}^{\infty} K_n$. Then K is a Borel set and $K \subset E$. Since $\mu(E \setminus K) \leq \mu(E \setminus K_n) < 1/n$ for each $n = 1, 2, \ldots, \mu(E \setminus K) = 0$. By assumption, $E \setminus K$ is an m-null set. Then $E = K \cup (E \setminus K)$ is m-measurable and so $\mathcal{U} \subset \mathcal{B}(T)$.

For the measurability theorems in Wiener and Yeh-Wiener spaces in which we are concerned, we have $\mathcal{B}(T) \subset \mathcal{U}$. For example, if E is Lebesgue measurable then $J^{-1}(E)$ is Wiener measurable. To establish the converse measurability theorems we need $\mathcal{U} = \mathcal{B}(T)$.

Theorem 2.2. Suppose $\mathcal{B}(T) \subset \mathcal{U}$. If there exists an integrable function $g: T \to \mathbb{R}$ such that $g(t) > 0$ for m-a.e. t and $\mu E = \int_E g(t) \, d\tilde{m}(t)$ for every m-measurable set E, then $\mathcal{U} = \mathcal{B}(T)$.

Proof. By Lemma 2.1, it suffices to show that if N is a μ-null set then N is an m-null set. Now we assume that N is a μ-null set and it is not an m-null set. We consider two cases: (1) N is m-measurable, (2) N is not m-measurable.
If N is \overline{m}-measurable, then there exists a Borel set $B \subset N$ such that $mB = \overline{m}N > 0$. Since $\mu B = \int_B g(t) \, d\overline{m}(t) > 0$, $\mu_N > 0$ where μ_* is the inner measure of μ. Since $\mu N = \mu_* N$, $\mu N > 0$ which is a contradiction.

If N is not \overline{m}-measurable, i.e., $N \notin \mathcal{B}(\mathcal{T})$, then $mB > 0$ for every Borel set $B \supset N$. Then $\mu B > 0$ for any Borel set $B \supset N$. Since μ is tight, there exists a compact set $K_n \subset N^c$ such that $\mu(N^c \setminus K_n) < 1/n$ for each n. Let $K = \bigcup_{n=1}^\infty K_n$. Then K^c is a Borel set and $N \subset K^c$.

$$
\mu(K^c) = 1 - \mu(K) = \mu(N^c) - \mu(K) \leq \mu(N^c \setminus K_n) < 1/n \quad \text{for each } n.
$$

Hence $\mu(K^c) = 0$. This contradicts the fact that $\mu B > 0$ for any Borel set $B \supset N$. Therefore we conclude that every μ-null set is also an \overline{m}-null set.

3. Converse measurability theorems.

THEOREM 3.1 (KÖHLE). Let $a = t_0 < t_1 < \cdots < t_n = b$. Let E be any subset of \mathbb{R}^n and let J be defined as in (1). Then E is Lebesgue measurable if and only if $J^{-1}(E)$ is Wiener measurable.

PROOF. By the definition of Wiener measure, if E is Lebesgue measurable, then $J^{-1}(E)$ is Wiener measurable. To show the converse, let

$$
\mathcal{U} = \{E \subset \mathbb{R}^n | J^{-1}(E) \text{ is Wiener measurable}\}.
$$

Then \mathcal{U} contains all Lebesgue measurable sets in \mathbb{R}^n. For $E \in \mathcal{U}$, we define μ on \mathcal{U} by $\mu E = \nu(J^{-1}(E))$. Then every Lebesgue measurable set E satisfies (2). Since Wiener measure is tight on the σ-algebra of Wiener measurable sets which contains the Borel sets in $C_1[a,b], (\mathbb{R}^n, \mathcal{U}, \mu)$ is a complete tight measure space. Hence by Theorem 2.2, $J^{-1}(E)$ is Wiener measurable if and only if E is Lebesgue measurable.

Let $a = s_0 < s_1 < \cdots < s_m = b, \alpha = t_0 < t_1 < \cdots < t_n = \beta$. Let E be any subset of \mathbb{R}^{mn} and define $J: C_2[R] \to \mathbb{R}^{mn}$ by

$$
J(x) = (x(s_1, t_1), \ldots, x(s_m, t_n)).
$$

J is continuous on $C_2[R]$ with respect to the uniform topology. By the definition of Yeh-Wiener measure, if E is Lebesgue measurable then $J^{-1}(E)$ is Yeh-Wiener measurable and

$$
\lambda(J^{-1}(E)) = \int_E g(\tilde{\xi}) \, d\gamma(\tilde{\xi})
$$

for any Lebesgue measurable set E in \mathbb{R}^{mn}, where γ is Lebesgue measure on \mathbb{R}^{mn},

$$
g(\tilde{\xi}) = \{(2\pi)^mn \{((s_1 - a) \cdots (s_m - s_{m-1})(t_1 - \alpha) \cdots (t_n - t_{n-1})\}^{-1/2}
\times \exp \left\{ -\frac{1}{2} \sum_{k=1}^n \sum_{j=1}^m (\xi_{j,k} - \xi_{j-1,k} - \xi_{j,k-1} + \xi_{j-1,k-1})^2 / (s_j - s_{j-1})(t_k - t_{k-1}) \right\}
> 0,
$$

and $\tilde{\xi} = (\xi_{1,1}, \xi_{1,2}, \ldots, \xi_{m,n}) \in \mathbb{R}^{mn}$.

We will omit the proof of Theorem 3.2 below since it is similar to the proof given above for Theorem 3.1.
THEOREM 3.2 (SKOUG). Let J be defined as in (3) and let E be any subset of \mathbb{R}^{mn}. Then E is Lebesgue measurable if and only if $J^{-1}(E)$ is Yeh-Wiener measurable.

We shall use the following notation for the Cartesian product of n Wiener spaces $\hat{X}C_1[a, b] = C_1[a, b] \times \cdots \times C_1[a, b]$ and $\hat{X}\nu = \nu \times \cdots \times \nu$ will denote the product of n Wiener measures on $\hat{X}C_1[a, b]$.

Let $t_0 = t_1 < \cdots < t_n = \beta$ be a subdivision of $[\alpha, \beta]$. Define $\psi: \hat{X}C_1[a, b] \to \hat{X}C_1[a, b]$ by

$$\psi(y_1, y_2, \ldots, y_n) = \left(\sqrt{\frac{t_1 - t_0}{2}} y_1, \sqrt{\frac{t_1 - t_0}{2}} y_2, \ldots, \sqrt{\frac{t_2 - t_1}{2}} y_1 + \frac{\sqrt{t_2 - t_1}}{2} y_2, \ldots, \sqrt{\frac{t_n - t_{n-1}}{2}} y_1 + \cdots + \sqrt{\frac{t_n - t_{n-1}}{2}} y_n \right).$$

Then ψ is 1-1 and onto. ψ and ψ^{-1} are continuous with respect to the uniform topology. Let $G: C_2[R] \to \hat{X}C_1[a, b]$ be defined by $G(x) = (x(\cdot, t_1), \ldots, x(\cdot, t_n))$. Then G is a continuous function from $C_2[R]$ onto $\hat{X}C_1[a, b]$. In [1] Cameron and Storvick evaluated certain Yeh-Wiener integrals in terms of Wiener integrals. In particular they obtained the n-parallel lines theorem. The converse of the n-parallel lines theorem follows quite easily once Theorem 3.3 below is established [2].

THEOREM 3.3. Let A be any subset of $\hat{X}C_1[a, b]$. Then $\psi^{-1}A$ is $\hat{X}\nu$-measurable if and only if $G^{-1}A$ is Yeh-Wiener measurable. Furthermore,

$$\lambda(G^{-1}A) = \hat{X}\nu(\psi^{-1}A).$$

PROOF. By the n-parallel lines theorem, if $\psi^{-1}A$ is $\hat{X}\nu$-measurable then $G^{-1}A$ is Yeh-Wiener measurable and $\lambda(G^{-1}A) = \hat{X}\nu(\psi^{-1}A)$ [2]. To show the converse, let $J = \psi^{-1} \circ G$. Then J is a continuous function from $C_2[R]$ onto $\hat{X}C_1[a, b]$. Let

$$\mathcal{U} = \{ E \in \hat{X}C_1[a, b]: J^{-1}(E) \text{ is Yeh-Wiener measurable} \}.$$

Define a set function μ on \mathcal{U} by $\mu E = \lambda(J^{-1}E))$. For any $\hat{X}\nu$-measurable set $E = \psi^{-1}(\psi E)$, $G^{-1}(\psi E) = J^{-1}(E)$ is Yeh-Wiener measurable and $\lambda(G^{-1}\psi E) = \hat{X}\nu(\psi^{-1}\psi E) = \hat{X}\nu(E)$ by the n-parallel lines theorem. Hence $E \in \mathcal{U}$ and $\mu E = \lambda(J^{-1}E) = \lambda(G^{-1}\psi E) = \hat{X}\nu(E) = \int_E 1 \, d \hat{X}\nu$. Hence by Theorem 2.2, \mathcal{U} is the σ-algebra of $\hat{X}\nu$-measurable sets. If $G^{-1}A = J^{-1}(\psi^{-1}A)$ is Yeh-Wiener measurable, then $\psi^{-1}A \in \mathcal{U}$ and so $\psi^{-1}A$ is $\hat{X}\nu$-measurable.

ACKNOWLEDGMENT. The authors wish to thank Professors G. W. Johnson and D. L. Skoug for their advice in the writing of this paper.
References

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL, KOREA

DEPARTMENT OF MATHEMATICS, HAN NAM UNIVERSITY, DAEMON, KOREA