ABSTRACT. We show that one of the binomial numbers discovered by K. J. Huang provides an example of topologically equivalent measures in $2^\mathbb{N}$ that are not trivially homeomorphic.

Two Borel measures μ and ν in a topological space X are said to be homeomorphic, or topologically equivalent, if $\mu = \nu h$ for some homeomorphism $h : X \to X$. In the Cantor space $X = \{0,1\}^\mathbb{N}$, for any $0 \leq r \leq 1$ let $\mu(r) = r^{\mu_n}$, where $\mu_n(0) = r$ and $\mu_n(1) = 1 - r$ for all n. $\mu(1 - r)$ is always homeomorphic to $\mu(r)$, by the mapping R that interchanges 0 and 1 in each coordinate space. When $r \in [0,1]$ is rational, transcendental, or an algebraic integer of degree 2, it is known that no other member of $\{\mu(p) : 0 \leq p \leq 1\}$ is homeomorphic to $\mu(r)$. This is because a number $s \in [0,1]$ is binomially related to such a number r if and only if $s = r$, or $s = 1 - r$ [2, 1]. For each $n > 2$ Huang [1] exhibited an algebraic integer $r \in (0,1)$ (and also a noninteger) of degree n that is binomially related to at least one number $s \neq r$, $s \neq 1 - r$. Pinch [4] showed that in case $n = 2k + 1$ there are at least $2k$ such numbers s. However, it has remained an open question whether $\mu(s)$ is homeomorphic to $\mu(r)$ in any of these cases. We shall show that the measures corresponding to Huang's algebraic integer of degree 3 are, in fact, homeomorphic. The other cases remain open.

Theorem. Let r be the unique real root of the equation $r^3 + r^2 - 1 = 0$ and let $s = r^2$. Then $\mu(s)$ is homeomorphic to $\mu(r)$, as well as to $\beta(1 - r)$ and $\beta(1 - s)$.

For any $u \in \{0,1\}^n$, $n \in \mathbb{N}$, the set $\langle u \rangle$ of points of X whose first n coordinates coincide with u is called a thin cylinder.

Lemma. Let $U_i = \langle u_i \rangle$ and $V_i = \langle v_i \rangle$ ($i = 1,2,3$) be two indexed partitions of X into three thin cylinders, and suppose that

$$\mu(q)(U_i) = \mu(p)(V_i) \quad (i = 1,2,3).$$

Then $\mu(q) = \mu(p)h$ for some homeomorphism $h : X \to X$.

This is a consequence of a general sufficient condition [3, Theorem 3.1] for the existence of a homeomorphism between shift-invariant measures in different spaces of the form $\{1,2,\ldots,k\}^\mathbb{N}$. It may be proved directly as follows.

X can be partitioned into three thin cylinders in only two ways, so U_i and V_i must be indexings of either $\{(0),(1,0),(1,1)\}$ or $\{(1),(0,0),(0,1)\}$. Each $x \in X$
can be written uniquely as a sequence of blocks \(b_1, b_2, \ldots \) equal to \(u_1, u_2, \) or \(u_3 \). Let \(h(x) \) be the element of \(X \) defined by the sequence of blocks \(b'_1, b'_2, \ldots \), where \(b'_i = v_1, v_2, \) or \(v_3 \), according as \(b_i = u_1, u_2, \) or \(u_3 \). Evidently \(h \) is bijective. The class \(\mathcal{B} \) of thin cylinders of the form \((b_1, b_2, \ldots, b_n) \) constitute a base, and so does \(h(\mathcal{B}) \), because every thin cylinder is the union of at most two members of either class. Hence \(h \) is a homeomorphism. Equations (1) and the definition of product measure imply that \(\mu(q)(B) = \mu(p)(h(B)) \) for each \(B \in \mathcal{B} \). Since every open set is a countable disjoint union of members of \(\mathcal{B} \) it follows that \(\mu(q) = \mu(p)h \).

If we take
\[
U_1 = \langle 0 \rangle, \quad U_2 = \langle 1, 0 \rangle, \quad U_3 = \langle 1, 1 \rangle
\]
and
\[
V_1 = \langle 0, 0 \rangle, \quad V_2 = \langle 1 \rangle, \quad V_3 = \langle 0, 1 \rangle,
\]
then equations (1) become
\[
q = p^2, \quad q(1 - q) = 1 - p, \quad (1 - q)^2 = p(1 - p),
\]
which are satisfied by \(p = r, q = s \). This completes the proof of the theorem. The corresponding homeomorphism \(h \) leaves \((1, 0, 0) \) invariant and has four fixed points.

Alternatively, we could take \(V_2, V_3, V_1 \) in place of \(U_1, U_2, U_3 \). Then equations (1) become
\[
1 - q = p^2, \quad q(1 - q) = 1 - p, \quad q^2 = p(1 - p),
\]
which are satisfied by \(p = r, q = 1 - s \). In this case the corresponding homeomorphism permutes \(V_3, V_2, V_1 \) cyclically and has period 3. It is equal to \(hR \).

It should be noted, however, that \(h \) is never unique; if \(\mu(q) = \mu(p)h \), then \(h \) can always be replaced by \(hg \) or \(gh \), where \(g \) is an arbitrary permutation of the coordinate spaces.

It is easy to verify that all possible choices of \(U_i \) and \(V_i \) lead to equations (1) that have no solutions other than ones for which \(q = p, q = 1 - p \), or for which \(\{p, q\} \subset \{1 - r, 1 - s, s, r\} \), so no further equivalences can be obtained from the lemma as stated.

REFERENCES

DEPARTMENT OF MATHEMATICS, WIDENER UNIVERSITY, CHESTER, PENNSYLVANIA 19013

DEPARTMENT OF MATHEMATICS, BRYN MAWR COLLEGE, BRYN MAWR, PENNSYLVANIA 19010