Four topologically equivalent measures in the Cantor space
HTML articles powered by AMS MathViewer
- by Francisco J. Navarro-Bermúdez and John C. Oxtoby
- Proc. Amer. Math. Soc. 104 (1988), 859-860
- DOI: https://doi.org/10.1090/S0002-9939-1988-0939966-4
- PDF | Request permission
Abstract:
We show that one of the binomial numbers discovered by K. J. Huang provides an example of topologically equivalent measures in ${2^{\mathbf {N}}}$ that are not trivially homeomorphic.References
- K. J. Huang, Algebraic numbers and topologically equivalent measures in the Cantor set, Proc. Amer. Math. Soc. 96 (1986), no. 4, 560–562. MR 826481, DOI 10.1090/S0002-9939-1986-0826481-X
- Francisco J. Navarro-Bermúdez, Topologically equivalent measures in the Cantor space, Proc. Amer. Math. Soc. 77 (1979), no. 2, 229–236. MR 542090, DOI 10.1090/S0002-9939-1979-0542090-0
- Francisco J. Navarro-Bermúdez, Topologically equivalent measures in the Cantor space. II, Real Anal. Exchange 10 (1984/85), no. 1, 180–187. MR 795615, DOI 10.2307/44151698 R. G. E. Pinch, Binomial equivalence of algebraic numbers, preprint, 1986.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 859-860
- MSC: Primary 28C15; Secondary 28A35, 60B05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0939966-4
- MathSciNet review: 939966